Purpose: Seeding prosthetic arterial grafts with genetically modified endothelial cells (ECs) has the potential to substantially improve graft function. However, preliminary applications suggest that grafts seeded with retrovirally transduced ECs yield a significantly lower percent surface coverage than those seeded with nontransduced ECs. The objective of this study was to test the hypothesis that canine ECs transduced with the human tissue plasminogen activator (tPA) gene would have a lower rate of adherence to pretreated expanded polytetrafluoroethylene (ePTFE) both in vitro and in vivo and that they would proliferate at a slower rate on pretreated ePTFE in vitro.
Methods: Early passage ECs derived from canine external jugular vein were transduced with the retroviral MFG vector containing the gene for human tPA. ECs exposed to media alone served as controls. Iodine 125-labeled ECs were seeded in vitro onto ePTFE graft segments pretreated with canine whole blood, fibronectin (50 micrograms/ml), or media alone, and the percent of ECs adherent at 1 hour were determined (n = 3). Additional tPA-transduced and -nontransduced ECs were grown for 10 days on either fibronectin (50 micrograms/ml)-pretreated ePTFE wafers or tissue culture plastic pretreated with gelatin (1%) or fibronectin (50 micrograms/ml), and the EC proliferation rates were determined (n = 3). Furthermore, 125I-labeled ECs were seeded onto fibronectin (50 micrograms/ml)-pretreated ePTFE graft segments implanted as carotid and femoral artery interposition grafts (n = 3). The grafts were harvested after 1 hour, and the percent of ECs adherent was determined.
Results: Human tPA was detected by immunohistochemical staining in 61% +/- 5% of the transduced ECs and was expressed at 35.4 +/- 12.9 ng/hr/10(6) cells. Fibronectin and whole blood pretreatment of the ePTFE grafts led to greater EC adherence in vitro than did media alone (90.9% +/- 5.3% vs 77.8% +/- 5.8% vs 4.7% +/- 1.1%, p < or = 0.05). No significant difference in the rates of adherence or proliferation was seen in vitro between the transduced and nontransduced ECs. No significant difference in proliferation was found for the transduced ECs on the three matrices tested in vitro. In contrast, adherence of the transduced ECs in vivo was significantly lower than that of nontransduced ECs (64.7% +/- 2.1% vs 73.7% +/- 4.1%, p < or = 0.05) 1 hour after implantation.
Conclusions: Lower rates of surface endothelialization by genetically modified ECs in vivo do not appear to be due to an impaired capacity to initially adhere or proliferate on the synthetic graft but may result from decreased adherence after exposure to in vivo hemodynamic forces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0741-5214(95)70071-4 | DOI Listing |
J Biomed Mater Res A
January 2025
Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Modena, Italy.
A wound, defined as a disruption in the continuity of the skin, is among the most common issues in the population and poses a significant burden on healthcare systems and economies worldwide. Despite the countless medical devices currently available to promote wound repair and skin regeneration, there is a growing demand for new skin devices that incorporate innovative biomaterials and advanced technologies. Bioglasses are biocompatible and bioactive materials capable of interacting with biological tissues.
View Article and Find Full Text PDFNat Commun
January 2025
The Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200233, China.
Balanced self-renewal and differentiation of stem cells are crucial for maintaining tissue homeostasis, but the underlying mechanisms of this process remain poorly understood. Here, from an RNA interference (RNAi) screen in adult Drosophila intestinal stem cells (ISCs), we identify a factor, Pax, which is orthologous to mammalian PXN, coordinates the proliferation and differentiation of ISCs during both normal homeostasis and injury-induced midgut regeneration in Drosophila. Loss of Pax promotes ISC proliferation while suppressing its differentiation into absorptive enterocytes (ECs).
View Article and Find Full Text PDFTaiwan J Obstet Gynecol
January 2025
Department of Pathology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan; Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan. Electronic address:
Objective: Endometrial cancer (EC) shows substantial heterogeneity in their immune microenvironment. BHLHE22 is consistently hypermethylated in EC and high expression of BHLHE22 is likely to be immunosuppressive in the tumor microenvironment. Herein, we evaluated expression of BHLHE22, programmed cell death ligand-1 (PD-L1), CD8, CD68 and mismatch repair proteins in EC.
View Article and Find Full Text PDFiScience
January 2025
Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan.
Ischemia and pathological angiogenesis in retinal vascular diseases cause serious vision-related problems. However, the transcriptional regulators of vascular repair remain unidentified. Thus, the factors and mechanisms involved in angiogenesis must be elucidated to develop approaches for restoring normal blood vessels.
View Article and Find Full Text PDFCell Commun Signal
January 2025
School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
Endothelial-mesenchymal transition (EndMT) is defined as an important process of cellular differentiation by which endothelial cells (ECs) are prone to lose their characteristics and transform into mesenchymal cells. During EndMT, reduced expression of endothelial adhesion molecules disrupts intercellular adhesion, triggering cytoskeletal reorganization and mesenchymal transition. Numerous studies have proved that EndMT is a multifaceted biological event driven primarily by cytokines such as TGF-β, TNF-α, and IL-1β, alongside signaling pathways like WNT, Smad, MEK-ERK, and Notch.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!