A theoretical solution for the frictionless rolling contact of cylindrical biphasic articular cartilage layers.

J Biomech

Department of Mechanical Engineering, Columbia University, New York, NY 10032, USA.

Published: November 1995

AI Article Synopsis

Article Abstract

Previous studies have shown that interstitial fluid pressurization plays an important role in the load support mechanism of articular cartilage under normal step loading. These studies have demonstrated that interstitial fluid pressurization decreases with time if the applied load is maintained constant. In the present study, a theoretical solution is obtained for another common loading of articular cartilage, namely the contact of surfaces in rolling motion. Pure rolling of symmetrical frictionless cylindrical cartilage layers is analyzed under steady state. The linear biphasic model of Mow et al. [J. Biomech. Engng 102, 73-84 (1980)] is used to describe the mechanical response of articular cartilage. The solution of this contact problem reduces to simultaneously solving a set of four integral equations, akin to the dual integral problem of elastic contact. It is found that the solution is dependent on four non-dimensional parameters: Rh = Vb/HAk, W/2 mu b, R/b, and v, where V is the surface velocity, b the cartilage thickness, HA the aggregate modulus, mu the shear modulus, v Poisson's ratio, k the permeability, R the radius of cylindrical surfaces, and W the applied load per unit cylinder length. For Rh << 1, interstitial fluid pressurization is found to be negligible, and all the applied load is supported by the solid collagen-proteoglycan phase of the tissue, thus causing significant cartilage deformation. As Rh increases to a physiological level (Rh approximately 10(4)), interstitial fluid pressurization may support more than 90% of the total applied load, shielding the solid matrix from high effective stresses and reducing matrix strains and deformation. The protective effect of interstitial fluid pressurization is observed to increase with increasing joint congruence (R/b); similarly, as the applied load (W/2 mu b) is increased, a greater proportion of it is supported by the fluid. In degenerative cartilage, Rh may drop by one or more orders of magnitude, primarily as a result of increased permeability. Thus, the protective stress-shielding effect of interstitial fluid pressurization may become less effective in diseased tissue, possibly setting a pathway for further tissue degeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0021-9290(95)00008-6DOI Listing

Publication Analysis

Top Keywords

articular cartilage
16
theoretical solution
8
cartilage layers
8
interstitial fluid
8
fluid pressurization
8
applied load
8
cartilage
6
solution frictionless
4
frictionless rolling
4
contact
4

Similar Publications

Background: Autologous osteochondral transplantation (AOT) is an option to treat large osteochondral lesions of the talus (OLTs), accompanying subchondral cyst, and previous unsuccessful bone marrow stimulation (BMS) procedures. Although there is extensive literature on the outcomes of surgical interventions for medial osteochondral lesions, research focusing on lateral lesions remains limited. This article presents the intermediate-term clinical and radiologic outcomes following AOT for lateral OLTs.

View Article and Find Full Text PDF

Introduction: With the increased use of CTs in cases with trimalleolar ankle fractures, bone fragments between the posterior malleolus and the rest of the articular surface tibial plafond surface - described as intercalary fragments (ICFs) - can be recognized. The aim of this study was to determine the ICF size threshold for a significant change in the pressure distribution at the ankle joint, having a considerable impact on the remaining cartilage of the joint.

Design And Methods: Eight human cadaveric lower legs were used, and a posterior malleolus Bartonicek II fracture was created with sequential 2mm, 4mm, 6mm and 8mm ICFs.

View Article and Find Full Text PDF

Fasting activates optineurin-mediated mitophagy in chondrocytes to protect against osteoarthritis.

Commun Biol

January 2025

Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China.

Mitochondrial homeostasis plays a crucial role in the pathogenesis of osteoarthritis (OA), a chronic musculoskeletal disorder characterized by articular cartilage degeneration and chondrocyte apoptosis. However, molecular mechanisms underlying the association between mitophagy and OA remain unclear. Here, we aimed to investigate the role of the autophagy receptor protein optineurin (OPTN) in OA, and explore the effects of dietary intervention on OA symptoms and its relationship with OPTN-mediated mitophagy.

View Article and Find Full Text PDF

Aims: Magnesium ions (Mg) play an important role in promoting cartilage repair in cartilage lesions. However, no research has focused on the role of Mg combined with microfracture (MFX) in hyaline-like cartilage repair mediated by cartilage injury. This study aimed to investigate the beneficial effects of the combination of MFX and Mg in cartilage repair.

View Article and Find Full Text PDF

This study aimed to investigate the regulation of fibroblast phenotypes by MSCs delivering copper sulfide (CuS) nanoparticles (NPs) loaded with CDKN1A plasmids and their role in cartilage repair during osteoarthritis (OA). Single-cell RNA sequencing data from the GEO database were analyzed to identify subpopulations within the OA immune microenvironment. Quality control, filtering, PCA dimensionality reduction, and tSNE clustering were performed to obtain detailed cell subtypes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!