Aqueous samples containing various nitrated and aminated diphenylamine derivatives were subjected to the luminescent bacterium Vibrio fischeri NRRL-B-11177 to determine their ecotoxicological potential. As the most important toxicological parameter, EC50, the concentration needed to reduce bacterial luminescence by 50%, was calculated. All compounds tested must be classified to the category "very toxic to aquatic organisms" using the widely accepted classification scheme of D. Strupp, H.P. Lühr, H. T. Grunder, J. Gerdesmann, and J. Ahlers (1990, UWSF--Z. Umweltchem. Okotox. 2, 151-156). Only 2, 4-diaminodiphenylamine can be classified as "less toxic to aquatic organisms". EC50 values after 30, 60, and 90 min of incubation of the test compounds are presented. For many of the compounds tested in this study there are no toxicological data in the literature.

Download full-text PDF

Source
http://dx.doi.org/10.1006/eesa.1995.1055DOI Listing

Publication Analysis

Top Keywords

nitrated aminated
8
luminescent bacterium
8
bacterium vibrio
8
vibrio fischeri
8
compounds tested
8
toxic aquatic
8
aquatic organisms"
8
toxicity diphenylamine
4
diphenylamine nitrated
4
aminated derivatives
4

Similar Publications

Article Synopsis
  • Protein crosslinks caused by oxidative stress are linked to diseases like atherosclerosis, Alzheimer's, and Parkinson's, but their specific nature and locations in proteins remain unclear.
  • A new method utilizing "light" and "heavy" isotope-labeled reagents for efficient amine labeling of crosslinked peptides has shown improved identification and quantification over previous techniques.
  • This approach has led to the successful identification of novel crosslinks in proteins like β-casein and α-synuclein, as well as effective mapping of disulfide bonds in serum albumin, highlighting its versatility for studying protein modifications.
View Article and Find Full Text PDF

Sulfate radical (SO) advanced oxidation processes (SR-AOPs) are efficient for degrading a broad spectrum of contaminants. This study demonstrates that the existence of environmentally relevant concentrations of nitrite (NO) can lead to the formation of N-nitrosodimethylamine (NDMA), a probable human carcinogen, when heat activated peroxydisulfate (heat/PDS) is applied to address contaminants with dimethylamine moieties, such as tetracyclines. NO effectively competes with tetracyclines for SO at a high second-order reaction rate constant of 8.

View Article and Find Full Text PDF

Hepatocellular carcinoma antibodies preferably identify nitro-oxidative-DNA lesions induced by 4-Chloro-orthophenylenediamine and DEANO.

Sci Rep

November 2024

Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India.

The widespread use of oxidative hair colouring cosmetics threatens public health. Phenylenediamine derivatives serve as the main pigment in permanent hair colours. They interact with biological macromolecules, altering their functional and structural physiology.

View Article and Find Full Text PDF

Degradation of sulfamethoxazole in a falling film dielectric barrier discharge system: Performance, mechanism and toxicity evaluation.

Sci Total Environ

December 2024

College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; Shanghai institute of pollution control and ecological security, Shanghai 200092, China. Electronic address:

The ubiquitous presence of sulfonamides (SAs) in wastewater poses serious risks to human health and ecosystem safety. This study evaluated the performance of a falling film dielectric barrier discharge (DBD) system on the removal of five SAs, namely sulfamethoxazole (SMX), sulfisoxazole (SIZ), sulfathiazole (STZ), sulfadiazine (SDZ) and sulfamerazine (SMR). Removal efficiencies >99 % were observed for all target SAs within 30 min of treatment, with pseudo-first order rate constants varying between 0.

View Article and Find Full Text PDF

Nitrate Enhanced Sulfamethoxazole Degradation by 222 nm Far-UVC Irradiation: Role of Reactive Nitrogen Species.

Environ Sci Technol

October 2024

School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, International Science and Technology Cooperation Base for Environmental and Energy Technology of MOST, University of Science and Technology Beijing, Beijing 100083, China.

The application of 222 nm far-UVC irradiation for degrading organic micropollutants in water shows promise. Nitrate (NO), found in nearly all water bodies, can significantly impact the performance of 222 nm far-UVC-driven systems. This work was the first to investigate the effect of NO on sulfamethoxazole (SMX) photodegradation at 222 nm, finding that NO significantly enhances SMX degradation in different dissociated forms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!