Forward mutations induced by 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU) in the lacl gene of Escherichia coli were recovered from bacteria proficient (Ogt+ Ada+) and deficient (Ogt- Ada-) in O6-alkylguanine-DNA alkyltransferase activity. A CCNU dose of 1 mM was selected for DNA sequence analysis. A total of 245 induced mutations were characterized. The mutations were almost exclusively (95%) GC-->AT transitions, indicating that CCNU-induced mutations arose in bacteria primarily from misreplication of O6-chloroethylguanine, in total agreement with results obtained for monofunctional alkylating agents. The distribution of CCNU-induced GC-->AT mutations was significantly altered by the presence of DNA alkyltransferase activity (P = 0.01). In the Ogt+ Ada+ mutational spectrum, guanines flanked on both sides by A:T base-pairs were on average 2.8 times more likely to mutate than those flanked by G:C base-pairs on at least one side. This bias disappeared in the Ogt- Ada- genetic background, thereby providing evidence that O6-chloroethylated guanines adjacent to G:C base-pairs are better targets for bacterial alkyltransferase than those not adjacent to G:C base-pairs. We recently reported a similar bias for ethyl methanesulfonate, strengthening the idea that CCNU is acting as a simple ethylating compound. In summary, this paper presents for the first time evidence that DNA repair by O6-alkylguanine-DNA alkyltransferases plays a major role in removing lesions responsible for GC-->AT transitions induced by CCNU, influencing their ultimate distribution with respect to sequence context.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mc.2940140403DOI Listing

Publication Analysis

Top Keywords

escherichia coli
8
lacl gene
8
ogt+ ada+
8
ogt- ada-
8
alkyltransferase activity
8
gc-->at transitions
8
adjacent base-pairs
8
mutations
5
mutational specificity
4
specificity 1-2-chloroethyl-3-cyclohexyl-1-nitrosourea
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!