Unlabelled: AIMS OF THE PRESENT INVESTIGATION: Observations made in a preliminary study of pulsatile cerebrospinal fluid (CSF) and brain motions using MR imaging called for a reconsideration of the CSF flow model currently accepted. The following questions were addressed: 1) The nature of the CSF-circulation, e.g., the magnitude and pattern of pulsatile and bulk flow; 2) The driving forces of the CSF circulation and assessment of the role of associated hemodynamics and brain motions; 3) The major routes for the absorption of CSF.

Material And Methods: CSF flow and associated hemodynamics were studied using gated MR imaging, in 26 healthy volunteers, 5 patients with communicating hydrocephalus and 10 with benign intracranial hypertension. Radionuclide cisternography was performed in 10 individuals with venous vasculitis.

Results And Conclusions: 1) The CSF-circulation is propelled by a pulsating flow, which causes an effective mixing. This flow is produced by the alternating pressure gradient, which is a consequence of the systolic expansion of the intracranial arteries causing expulsion of CSF into the compliant and contractable spinal subarachnoid space. 2) No bulk flow is necessary to explain the transport of tracers in the subarachnoid space. 3) The main absorption of the CSF is not through the Pacchionian granulations, but a major part of the CSF transportation to the blood-stream is likely to occur via the paravascular and extracellular spaces of the central nervous system. 4) The intracranial dynamics may be regarded as the result of an interplay between the demands for space by the four components of the intracranial content, i.e. the arterial blood, brain volume, venous blood and the CSF. This interaction is shown to have a time offset within the cerebral hemispheres in a fronto-occipital direction during the cardiac cycle (the fronto-occipital "volume wave"). 5) The outflow from the cranial cavity to the cervical subarachnoid space (SAS) is dependent in size and timing on the intracranial arterial expansion during systole. Similarly, the outflow from the aqueduct mirrors the brain expansion. The brain expansion is typically very small as evident from the minute aqueductal flow observed in healthy individuals. This expansion occurs simultaneously with an inflow of CSF and will be directed inwards towards the ventricular system. The brain expansion is of decisive importance for the formation of the normal transcerebral pressure gradient. 6) The instantaneous increase of flow in the superior sagittal sinus at the beginning of the systole reflects a direct pressure transmission via the SAS from the expanding arteries to the cerebral veins. It is contended that this early increase in venous pressure together with the volume wave is most likely an important prerequisite for sustaining normal intracranial pressure (ICP) and normal cerebral blood flow. This counter pressure should be reduced in hydrocephalus due to the decreased arterial expansion and could explain the reduced blood flow as well as an increased transmantle pressure gradient causing the ventricular dilatation. An increased pressure in the venous system is likely to be the cause of increases in ICP, including the increased pressure observed in benign intracranial hypertension (BIH).

Download full-text PDF

Source

Publication Analysis

Top Keywords

pressure gradient
12
subarachnoid space
12
brain expansion
12
flow
10
csf
9
pressure
9
cerebrospinal fluid
8
intracranial
8
intracranial dynamics
8
radionuclide cisternography
8

Similar Publications

Flow environment affects nutrient transport in soft plant roots.

Soft Matter

January 2025

Microfluidics and Microscale Transport Processes Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.

This work estimates Michaelis-Menten kinetics parameters for nutrient transport under varying flow rates in the soft roots of Indian mustard () using a plant fluidic device. To find the metallic components within the roots, inductively coupled plasma mass spectrometry (ICP-MS) analysis was performed. The flow rate-dependent metabolic changes were examined using Raman spectral analysis.

View Article and Find Full Text PDF

Wildland fire entrainment: The missing link between wildland fire and its environment.

PNAS Nexus

January 2025

Southern Research Station, US Forest Service, 320 Green Street, Athens, GA 30602, USA.

Wildfires are growing in destructive power, and accurately predicting the spread and intensity of wildland fire is essential for managing ecological and societal impacts. No current operational models used for fire behavior prediction resolve critical fire-atmospheric coupling or nonlocal influences of the fire environment, rendering them inadequate in accounting for the range of wildland fire behavior scenarios under increasingly novel fuel and climate conditions. Here, we present a new perspective on a dominant fire-atmospheric feedback mechanism, which we term wildland fire entrainment (WFE).

View Article and Find Full Text PDF

Background: In recent years, stenting has been widely used to treat patients with idiopathic intracranial hypertension (IIH) and venous sinus stenosis (VSS); however, research comparing stenting and medical treatment (MT) remains scarce. This study aimed to evaluate the effectiveness of stenting and MT in treating patients with IIH and VSS.

Methods: In this single-center, retrospective, cohort study, the clinical data of patients diagnosed with IIH and VSS at The First Affiliated Hospital of Zhengzhou University from January 2018 to June 2023 were collected for analysis.

View Article and Find Full Text PDF

The present article focuses on the analysis of the two-phase flow of blood via a stenosed artery under the influence of a pulsatile pressure gradient. The core and plasma regions of flow are modeled using the constitutive relations of Herschel-Bulkley and the Newtonian fluids, respectively. The problem is modeled in a cylindrical coordinate system.

View Article and Find Full Text PDF

Climate change and human activities affect the biomass of different algal and the succession of dominant species. In the past, phytoplankton phyla inversion has been focused on oceanic and continental shelf waters, while phytoplankton phyla inversion in inland lakes and reservoirs is still in the initial and exploratory stage, and the research results are relatively few. Especially for mid-to-high latitude lakes, the research is even more blank.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!