Influence of chronic intoxication with selenium on collagen and elastin content in tissues of rat.

Toxicol Lett

Fourth Department of Internal Medicine, Silesian School of Medicine, Sosnowiec, Poland.

Published: June 1993

Rats were intoxicated with sodium selenite (0.3 mg/kg body wt.) for 10 weeks. An increase in total collagen content in skin and a decrease in the lungs, liver and kidneys were observed. Enhanced serum and urine levels of collagen metabolites were found. Elastin content was shown to be increased in the lung, liver, heart muscle and kidney of selenium-intoxicated rats.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0378-4274(93)90020-xDOI Listing

Publication Analysis

Top Keywords

elastin content
8
influence chronic
4
chronic intoxication
4
intoxication selenium
4
selenium collagen
4
collagen elastin
4
content tissues
4
tissues rat
4
rat rats
4
rats intoxicated
4

Similar Publications

Structural and Functional Characterization of the Aorta in Hypertrophic Obstructive Cardiomyopathy.

Circ Heart Fail

January 2025

Aswan Heart Center, Magdi Yacoub Heart Foundation, Egypt (A.M.I., M.R., A. Elsawy, M.H., S.H., W.E., A. Elaithy, A. Elguindy, A. Afifi, Y.A., M.Y.).

Background: Changes in the phenotype and genotype in hypertrophic cardiomyopathy (HCM) are thought to involve the myocardium as well as extracardiac tissues. Here, we describe the structural and functional changes in the ascending aorta of obstructive patients with HCM.

Methods: Changes in the aortic wall were studied in a cohort of 101 consecutive patients with HCM undergoing myectomy and 9 normal controls.

View Article and Find Full Text PDF

The Labiomandibular Fold Anatomy for Comprehensive Lower Facial Rejuvenation: A Micro-Computed Tomography Investigation.

Aesthetic Plast Surg

January 2025

Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1, Shuaifuyuan, Dongcheng District, Beijing, China.

Background: Perioral rejuvenation is challenging due to the lack of spatial anatomical understanding of the labiomandibular fold (LMF). The LMF's formation mechanism remains underexplored due to intricate relationships between musculature and subcutaneous structures. This study aimed to clarify the three-dimensional structures of the LMF using micro-computed tomography and histology.

View Article and Find Full Text PDF

Thoracoabdominal aortic aneurysms (TAAAs) are rare but serious conditions characterized by dilation of the aorta characterized by remodeling of the vessel wall, with changes in the elastin and collagen content. Individuals with Marfan syndrome have a genetic predisposition for elastic fiber fragmentation and elastin degradation and are prone to early aneurysm formation and progression. Our objective was to analyze the medial collagen characteristics through histological, polarized light microscopy, and electron microscopy methods across the thoracic and abdominal aorta in twenty-five patients undergoing open surgical repair, including nine with Marfan syndrome.

View Article and Find Full Text PDF

Metabolic syndrome (MetS) is associated with osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs) and accumulation of arterial calcifications (ACs). Metformin (MET) inhibits this transdifferentiation in vitro. Here, we evaluate the in vivo efficacy of oral MET to reduce AC in a model of MetS.

View Article and Find Full Text PDF

Aneurysm rupture is a life-threatening event, yet its underlying mechanisms remain largely unclear. This study investigated the fracture properties of the thoracic aneurysmatic aorta (TAA) using the symmetry-constraint Compact Tension (symconCT) test and compared results to native and enzymatic-treated porcine aortas' tests. With age, the aortic stiffness increased, and tissues ruptured at lower fracture energy [Formula: see text].

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!