Concept of dose nonuniformity in interstitial brachytherapy.

Int J Radiat Oncol Biol Phys

Department of Radiation Oncology, University of Pittsburgh School of Medicine, PA 15213.

Published: June 1993

Purpose: Evaluation of the 3-dimensional dose distributions of interstitial implants using the dose uniformity ratio.

Methods And Materials: Single source, two sources, three and four sources arranged both linearly and in the form of a triangle or a square, ribbons with different seed spacings, a single-plane and double-plane implants were evaluated. The evaluations involved the use of differential dose volume histograms and the dose nonuniformity ratio defined as the ratio of the high dose volume to the reference volume.

Results: For a single source, the dose nonuniformity is the same regardless which dose rate is selected as the treatment dose rate. For any multi-source implant, the dose nonuniformity is altered depending on the selection of the reference dose rate. In addition, the dose nonuniformity curve exhibited three characteristics zones.

Conclusion: The dose nonuniformity ratio can be a useful tool in assessing and optimizing interstitial implants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0360-3016(93)90971-wDOI Listing

Publication Analysis

Top Keywords

dose nonuniformity
24
dose
12
dose rate
12
interstitial implants
8
single source
8
dose volume
8
nonuniformity ratio
8
nonuniformity
6
concept dose
4
nonuniformity interstitial
4

Similar Publications

A translational review of hyperthermia biology.

Int J Hyperthermia

December 2025

Gustavo S. Montana Distinguished Professor Emeritus of Radiation Oncology, Duke University School of Medicine, Durham, NC, USA.

This review was written to be included in the Special Collection 'Therapy Ultrasound: Medicine's Swiss Army Knife?' The purpose of this review is to provide basic presentation and interpretation of the fundamentals of hyperthermia biology, as it pertains to uses of therapeutic ultrasound. The fundamentals are presented but in the setting of a translational interpretation and a view toward the future. Subjects that require future research and development are highlighted.

View Article and Find Full Text PDF

A review on functional lung avoidance radiotherapy plan for lung cancer.

Front Oncol

December 2024

Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Tumor Hospital, Kunming, Yunnan, China.

Lung cancer is the most common malignant tumor in China. Its incidence and mortality rate increase year by year. In the synthesis treatment of lung cancer, radiotherapy (RT) plays a vital role, and radiation-induced lung injury(RILI) has become the major limiting factor in prescription dose escalation.

View Article and Find Full Text PDF

Background: The clinical use of flattening filter free (FFF) radiotherapy has significantly increased in recent years due to its effective enhancement of dose rates and reduction of scatter dose. A proposal has been made to adjust the incident electron angle of the accelerator to expand the application of FFF beams in areas such as large planning target volumes (PTVs). However, the inherent softening characteristics and non-uniformity of lateral dose distribution in FFF beams inevitably lead to increased dosimetry errors, especially for ionization chambers widely used in clinical practice, which may result in serious accidents during FFF radiotherapy.

View Article and Find Full Text PDF

Unsupervised Bayesian generation of synthetic CT from CBCT using patient-specific score-based prior.

Med Phys

December 2024

Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA.

Article Synopsis
  • CBCT scans are crucial for patient alignment in radiotherapy, but their image quality is often compromised by artifacts and inaccurate Hounsfield unit values, limiting their quantitative applications.
  • The study introduces an unsupervised learning approach utilizing a patient-specific diffusion model to generate synthetic CT images from CBCT, improving image quality for adaptive radiotherapy.
  • Results demonstrated that this method effectively reduced artifacts in CBCT images from various cancer types, enhancing the potential for better clinical outcomes in radiotherapy.
View Article and Find Full Text PDF

Purpose: To evaluate the dosimetric, radiobiological, and toxicity differences between different cylinder diameters (d) in high-dose-rate three-dimensional computed-tomography-guided vaginal brachytherapy (VBT) for early-stage endometrial cancer (EC).

Methods: From January 2019 to January 2024, postoperative EC patients treated with exclusive VBT using cylinders were classified by the cylinder diameter (d ≤ 2.6 cm: small-size; d ≥ 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!