Purpose: Evaluation of the 3-dimensional dose distributions of interstitial implants using the dose uniformity ratio.
Methods And Materials: Single source, two sources, three and four sources arranged both linearly and in the form of a triangle or a square, ribbons with different seed spacings, a single-plane and double-plane implants were evaluated. The evaluations involved the use of differential dose volume histograms and the dose nonuniformity ratio defined as the ratio of the high dose volume to the reference volume.
Results: For a single source, the dose nonuniformity is the same regardless which dose rate is selected as the treatment dose rate. For any multi-source implant, the dose nonuniformity is altered depending on the selection of the reference dose rate. In addition, the dose nonuniformity curve exhibited three characteristics zones.
Conclusion: The dose nonuniformity ratio can be a useful tool in assessing and optimizing interstitial implants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0360-3016(93)90971-w | DOI Listing |
Int J Hyperthermia
December 2025
Gustavo S. Montana Distinguished Professor Emeritus of Radiation Oncology, Duke University School of Medicine, Durham, NC, USA.
This review was written to be included in the Special Collection 'Therapy Ultrasound: Medicine's Swiss Army Knife?' The purpose of this review is to provide basic presentation and interpretation of the fundamentals of hyperthermia biology, as it pertains to uses of therapeutic ultrasound. The fundamentals are presented but in the setting of a translational interpretation and a view toward the future. Subjects that require future research and development are highlighted.
View Article and Find Full Text PDFFront Oncol
December 2024
Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Tumor Hospital, Kunming, Yunnan, China.
Lung cancer is the most common malignant tumor in China. Its incidence and mortality rate increase year by year. In the synthesis treatment of lung cancer, radiotherapy (RT) plays a vital role, and radiation-induced lung injury(RILI) has become the major limiting factor in prescription dose escalation.
View Article and Find Full Text PDFMed Phys
December 2024
Division of Ionizing Radiation Metrology, National Institute of Metrology (NIM), Beijing, China.
Background: The clinical use of flattening filter free (FFF) radiotherapy has significantly increased in recent years due to its effective enhancement of dose rates and reduction of scatter dose. A proposal has been made to adjust the incident electron angle of the accelerator to expand the application of FFF beams in areas such as large planning target volumes (PTVs). However, the inherent softening characteristics and non-uniformity of lateral dose distribution in FFF beams inevitably lead to increased dosimetry errors, especially for ionization chambers widely used in clinical practice, which may result in serious accidents during FFF radiotherapy.
View Article and Find Full Text PDFMed Phys
December 2024
Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA.
J Cancer Res Clin Oncol
November 2024
Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China.
Purpose: To evaluate the dosimetric, radiobiological, and toxicity differences between different cylinder diameters (d) in high-dose-rate three-dimensional computed-tomography-guided vaginal brachytherapy (VBT) for early-stage endometrial cancer (EC).
Methods: From January 2019 to January 2024, postoperative EC patients treated with exclusive VBT using cylinders were classified by the cylinder diameter (d ≤ 2.6 cm: small-size; d ≥ 3.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!