Electrode interactions were investigated on two totally deaf patients fitted with the Ineraid multichannel cochlear implant. Currents were applied to the most apical electrode (the 'perturbation' electrode) and their effects on psychophysical thresholds on the other electrodes (the 'test' electrodes) of the intracochlear array were studied. Two experimental protocols were used. In experiment I, we used a detection protocol to study how the perception of signals presented on each test electrode was affected by subthreshold, simultaneous or non-simultaneous stimulation of the perturbation electrode. Strong electrode interactions were observed with simultaneous stimulation and monotonically decreased as a function of electrode separation. Electrode interactions were weak with non-simultaneous stimulation. In experiment II, we used a discrimination protocol to study how the perception of signals presented on the test electrode was affected by suprathreshold, non-simultaneous stimulation of the perturbation electrode. Subjects could discriminate stimulation of 'perturbation+test' versus 'perturbation alone' when the level of stimulation on the test electrode was near threshold. These results demonstrate that strong electrode interactions in the Ineraid multichannel cochlear implant system are generated by electrical field summation due to simultaneous stimulation of different electrodes, and that one can reduce electrode interactions by sequential activation of the electrodes. These observations might help to understand basic phenomena underlying recent significant improvements in speech recognition scores when switching from simultaneous to interleaved pulsatile stimulation in patients wearing the same cochlear implant system (Wilson et al., 1991).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0378-5955(93)90136-o | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, Canada T6G 2G2.
Rigid, conjugated molecules are excellent candidates as molecular wires since they can achieve full extension between electrodes while maintaining conjugation. Molecular design can be used to minimize the accessible pi surface and interactions between the bridging wire and the electrode. Polyynes are archetypal molecular wires that feature a rigid molecular framework with a cross-section of a single carbon atom.
View Article and Find Full Text PDFSmall
January 2025
Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar, 364002, India.
The present work reports the synthesis, characterization, and excited state photo-physical studies of two copper(II) compounds, 1 & 2, which show interference-free emission with homocysteine (Hcy). Cu(II) complexes offer an orthogonal detection strategy involving fluorescence and electrochemical methods, paving the way for improved point-of-care diagnostics and early cardiovascular diseases intervention. The reduction-induced emission enhancement (RIEE) of Cu complexes facilitates the fluorescence measurement of Hcy at physiological pH.
View Article and Find Full Text PDFACS Nano
January 2025
College of Optical and Electronic Technology, China Jiliang University, 310018 Hangzhou, China.
Van der Waals (vdW) contact has been widely regarded as one of the most potential strategies for exploiting low-resistance metal-semiconductor junctions (MSJs) based on atomically thin transition-metal dichalcogenides (TMDs), but this method is still not efficient due to weak metal-TMD interfacial interactions. Therefore, an understanding of interfacial interactions between metals and TMDs is essential for achieving low-resistance contacts with weak Fermi level pinning (FLP). Herein, we report how the interfacial interactions between metals and TMDs affect the electrical contacts by considering more than 90 MSJs consisting of a semiconducting TMD channel and different types of metal electrodes, including bulk metals, MXenes, and metallic TMDs.
View Article and Find Full Text PDFNature
January 2025
Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
The integrated frequency comb generator based on Kerr parametric oscillation has led to chip-scale, gigahertz-spaced combs with new applications spanning hyperscale telecommunications, low-noise microwave synthesis, light detection and ranging, and astrophysical spectrometer calibration. Recent progress in lithium niobate (LiNbO) photonic integrated circuits (PICs) has resulted in chip-scale, electro-optic (EO) frequency combs, offering precise comb-line positioning and simple operation without relying on the formation of dissipative Kerr solitons. However, current integrated EO combs face limited spectral coverage due to the large microwave power required to drive the non-resonant capacitive electrodes and the strong intrinsic birefringence of LiNbO.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China.
Flexible electronics have been rapidly advancing and have garnered significant interest in monitoring physiological activities and health conditions. However, flexible electronics are prone to detachment in humid environments, so developing human-friendly flexible electronic devices that can effectively monitor human movement under various aquatic conditions and function as flexible electrodes remains a significant challenge. Here, we report a strongly adherent, self-healing, and swelling-resistant conductive hydrogel formed by combining the dual synergistic effects of hydrogen bonding and dipole-dipole interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!