Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: The effect of arginine on survival rates and host defense mechanisms was studied using two clinically relevant models of infection that included transfusion-induced immunosuppression.
Summary Background Data: Dietary arginine will improve resistance to infection but its role in transfusion-induced immunosuppression and bacterial translocation (gut-derived sepsis) has not been defined.
Methods: Balb/c mice were fed for 10 days with either a defined AIN-76A diet, an AIN-76A diet supplemented with 2% arginine, an AIN-76A diet supplemented with 4% glycine, or standard laboratory chow. In most experiments, the mice were then transfused with allogeneic blood and allowed to feed for an additional 5 days before undergoing either cecal ligation and puncture (CLP) or gavage with 10(10) Escherichia coli and a 20% burn injury. Additional animals fed with the arginine supplemented diet were treated with the nitric oxide inhibitor N omega-Nitro-L-arginine (NNA) before gavage and burn. The effect of these diets and NNA on the degree of translocation of 14C-radiolabeled E. coli from the intestine and the ability of the host to kill translocated organisms was also investigated. Mice were fed and received transfusion, gavage, and burn as above. Mesenteric lymph nodes (MLN), liver and spleen were harvested 4 hours postburn.
Results: Survival after CLP was 56% in the arginine-supplemented group versus 28% in the AIN-76A group and 20% in the chow group (p < 0.02). After gavage and burn, survival was 100% in the arginine-supplemented group versus 50% in both the glycine-supplemented and chow groups and 35% in the AIN-76A group (p < 0.01). In animals receiving the arginine-supplemented diet, treatment with NNA decreased survival from 95% to 30.5% (p < 0.0001). Greater translocation, as measured by radionuclide counts, was observed to the MLN of the AIN-76A group. However, there was no difference in translocation to the liver and spleen related to dietary group. Quantitative colony counts and the calculated percentage of remaining viable bacteria showed that the ability to kill translocated organisms was significantly enhanced in animals receiving arginine. Treatment with NNA reversed the beneficial effects of arginine on immune defense.
Conclusions: The benefit of arginine appears to be mediated by improved bactericidal mechanisms via the arginine-nitric oxide pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1242869 | PMC |
http://dx.doi.org/10.1097/00000658-199306000-00006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!