Molecular biology will have a profound impact upon the treatment of disease. Molecular techniques provide protein products for treatment of more diseases each year. The understanding of pathophysiology at the molecular level allows for improved drug design. Antisense technology can selectively control gene expression. Gene therapy is potentially the most important aspect of molecular biology. Physical and viral transduction mechanisms are being developed toward this end. Gene replacement, creation of antisense oligonucleotides, and prodrug strategies are being developed. Currently, gene replacement and prodrug therapy are feasible in at least a few cases, but further study will yield additional applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0002-9610(05)80796-2DOI Listing

Publication Analysis

Top Keywords

molecular biology
12
disease molecular
8
gene replacement
8
molecular
5
biology therapy
4
therapy disease
4
biology will
4
will profound
4
profound impact
4
impact treatment
4

Similar Publications

This review highlights how a Ir(III) and Ru(II) coordination complexes can change theirs cytotoxic activity by interacting with a biomolecules such as deoxyribonucleic acid (DNA), human albumins (HSA), nicotinamide adenine dinucleotide (NADH), and glutathione (GSH). We have selected biomolecules (DNA, NADH, GSH, and HSA) based on their significant biological roles and importance in cellular processes. Moreover, this review may provide useful information for the development of new half-sandwich Ir(III) and Ru(II) complexes with desired properties and relevant biological activities.

View Article and Find Full Text PDF

Disrupted nuclear shape is associated with multiple pathological processes including premature aging disorders, cancer-relevant chromosomal rearrangements, and DNA damage. Nuclear blebs (i.e.

View Article and Find Full Text PDF

White adipose tissue (WAT) comprises a plethora of cell types beyond adipocytes forming a regulatory network that ensures systemic energy homeostasis. Intertissue communication is facilitated by metabolites and signaling molecules that are spread by vasculature and nerves. Previous works indicated that WAT responds to environmental cues by adapting the abundance of these "communication routes", however, high intra-tissue heterogeneity questions the informative value of bulk or single cell analyses and underscores the necessity of whole-mount imaging.

View Article and Find Full Text PDF

Background: In this study, we present an in-depth analysis of the Eurasian minnow (Phoxinus phoxinus) genome, highlighting its genetic diversity, structural variations, and evolutionary adaptations. We generated an annotated haplotype-phased, chromosome-level genome assembly (2n = 50) by integrating high-fidelity (HiFi) long reads and chromosome conformation capture data (Hi-C).

Results: We achieved a haploid size of 940 megabase pairs (Mbp) for haplome 1 and 929 Mbp for haplome 2 with high scaffold N50 values of 36.

View Article and Find Full Text PDF

Introduction: Vitex L. is a large genus of tropical and subtropical trees used in medicine of many nations. Some species are used in gynecology due to flavonoids, iridoids, and diterpenes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!