Signal-to-noise-ratio (SNR) thresholds were measured for the detection of coherent motion in moving random pixel arrays of constant root-mean-square contrast (35%) and constant average luminance (48 cd/m2) for 8 or 16 directions of motion at 25 positions in the visual field of the right eye. Five observers took part in this perimetric study of motion detection. The 24 eccentric positions were chosen on 8 equally spaced radial lines at the eccentricities 6, 24, and 48 degrees, the 25th position was centred on the fovea. At these positions we analysed the threshold SNR-value as a function of motion direction alpha. A significant modulation of the threshold with alpha is called an anisotropy. Anisotropies were found for low to medium velocities at positions on and near the vertical meridian, where the thresholds proved to be highest for vertical motion directions (up or down). On the horizontal meridian no significant anisotropies were found. Also on the oblique radials anisotropies were found, especially at 225 degrees (lower nasal quadrant of the visual field, upper temporal quadrant of the retina), but these were milder than those on the vertical meridian. The diameter of the stimulus is an important parameter and its influence was explored, albeit incompletely. Also inhomogeneities were found. This is defined as a consistent modulation of the threshold SNR-value with position A, the position along an equi-eccentricity circle (A-inhomogeneity), or with eccentricity E (E-inhomogeneity) or both. A simple acuity-scaling optimized for the nasal retina takes care of most of the E-inhomogeneity, but an A-inhomogeneity stays rather prominent. It too is characterized by higher thresholds near the vertical meridian than near the horizontal meridian. The findings suggest that iso-threshold curves are elliptical or egg-shaped with their long axis on the horizontal meridian and shifted somewhat out of naso-temporal symmetry towards the nasal half of the retinal field. As with the anisotropies the inhomogeneity grows in amplitude for decreasing velocity below medium velocity values of 1-2 pixels/frame, but in contradistinction to the anisotropies it is present and even increases in amplitude for increasing velocities above these medium values of 1-2 pixels/frame as well. The results are discussed in the light of other perimetric studies of motion detection and acuity, in the light of a model postulating the cooperation of groups of velocity-tuned bilocal motion detectors, and in the light of recent ideas on structure and function of primate cortical areas and processing streams.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0042-6989(93)90242-o | DOI Listing |
Nat Commun
January 2025
Institute of Optoelectronic Thin Film Devices and Technology, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, College of Electronic Information and Optical Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China.
Biological neural systems seamlessly integrate perception and action, a feat not efficiently replicated in current physically separated designs of neural-imitating electronics. This segregation hinders coordination and functionality within the neuromorphic system. Here, we present a flexible device tailored for neuromorphic computation and muscle actuation.
View Article and Find Full Text PDFJSES Int
November 2024
Department of Orthopedics and Traumatology, Ankara Yildirim Beyazıt University, Ankara, Turkey.
Background: Arthroscopic Bankart repair (ABR) and the open Latarjet (OL) procedure are the most frequently preferred methods in the treatment of anterior glenohumeral instability. The aim of this study was to compare patients who underwent ABR or OL due to anterior glenohumeral instability in terms of functional capacity, glenohumeral bone loss, residual apprehension, redislocation, and dislocation arthropathy.
Methods: A total of 56 patients who underwent ABR or OL due to anterior glenohumeral instability between January 2018 and December 2021 were evaluated retrospectively.
Small
January 2025
School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
Eutectogels are recently emerged as promising alternatives to hydrogels owing to their good environmental stability derived from deep eutectic solvents (DES). However, construction of competent eutectogels with both high conductivity and mechanical toughness is still difficult to achieve yet highly demanded. In this work, new LMNP-PEDOT-CMC-AA (LPCA) eutectogels are prepared using acrylic acid (AA) and carboxymethylcellulose sodium (CMC) as polymeric networks, liquid metal nanoparticle-poly(3,4-ethylenedioxythiophene) (LMNP-PEDOT) are added as multifunctional soft fillers.
View Article and Find Full Text PDFSupport Care Cancer
January 2025
Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Laarbeeklaan 103 - 1090, Brussels, Belgium.
Introduction: The study's primary goal is to investigate differences in postprandial glycaemic response (PPGR) to beverages with varying glycaemic index (i.e. low and medium) between breast cancer survivors (BCS) with chronic pain and healthy pain-free controls (HC).
View Article and Find Full Text PDFPhysiol Meas
January 2025
Faculty of Sciences, University of Coimbra, Palacio de las Escuelas 3004-531, Coimbra, 3004-504, PORTUGAL.
Objective: The detection of arterial pulsating signals at the skin periphery with Photoplethysmography (PPG) are easily distorted by motion artifacts. This work explores the alternatives to the aid of PPG reconstruction with movement sensors (accelerometer and/or gyroscope) which to date have demonstrated the best pulsating signal reconstruction.
Approach: A generative adversarial network with fully connected layers (FC-GAN) is proposed for the reconstruction of distorted PPG signals.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!