An electrostatic mechanism for substrate guidance down the aromatic gorge of acetylcholinesterase.

Proc Natl Acad Sci U S A

Molecular Biology, Biotechnology Research Institute, National Research Council of Canada, Montreal, PQ.

Published: June 1993

Electrostatic calculations based on the recently solved crystal structure of acetylcholinesterase (acetylcholine acetylhydrolase, EC 3.1.1.7) indicate that this enzyme has a strong electrostatic dipole. The dipole is aligned with the gorge leading to its active site, so that a positively charged substrate will be drawn to the active site by its electrostatic field. Within the gorge, aromatic side chains appear to shield the substrate from direct interaction with most of the negatively charged residues that give rise to the dipole. The affinity of quaternary ammonium compounds for aromatic rings, coupled with this electrostatic force, may work in concert to create a selective and efficient substrate-binding site in acetylcholinesterase and explain why the active site is situated at the bottom of a deep gorge lined with aromatic residues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC46668PMC
http://dx.doi.org/10.1073/pnas.90.11.5128DOI Listing

Publication Analysis

Top Keywords

active site
12
electrostatic
5
electrostatic mechanism
4
mechanism substrate
4
substrate guidance
4
aromatic
4
guidance aromatic
4
gorge
4
aromatic gorge
4
gorge acetylcholinesterase
4

Similar Publications

Background: There is increasing recognition that the interpretation of active-controlled HIV prevention trials should consider the counterfactual placebo HIV incidence rate, that is, the rate that would have been observed if the trial had included a placebo control arm. The PrEPVacc HIV vaccine and pre-exposure prophylaxis trial (NCT04066881) incorporated a pre-trial registration cohort partly for this purpose. In this article, we describe our attempts to model the counterfactual placebo HIV incidence rate from the registration cohort.

View Article and Find Full Text PDF

Mushrooms are considered one of the safe and effective medications because they have great economic importance due to countless biological properties. Cordyceps militaris contains bioactive compounds with antioxidant, antimicrobial and anti-cancerous properties. This study was projected to analyze the potentials of biometabolites and to extract antimicrobial peptides and protein from the C.

View Article and Find Full Text PDF

Pt/CeO single-atom catalysts are attractive materials for CO oxidation but normally show poor activity below 150 °C mainly due to the unicity of the originally symmetric PtO structure. In this work, a highly active and stable Pt/CeO single-site catalyst with only 0.1 wt % Pt loading, achieving a satisfied complete conversion of CO at 150 °C, can be obtained through fabricating asymmetric PtO-oxygen vacancies (O) dual-active sites induced by well-dispersed NbO clusters.

View Article and Find Full Text PDF

Structural insights into glucose-6-phosphate recognition and hydrolysis by human G6PC1.

Proc Natl Acad Sci U S A

January 2025

Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.

The glucose-6-phosphatase (G6Pase) is an integral membrane protein that catalyzes the hydrolysis of glucose-6-phosphate (G6P) in the endoplasmic reticulum lumen and plays a vital role in glucose homeostasis. Dysregulation or genetic mutations of G6Pase are associated with diabetes and glycogen storage disease 1a (GSD-1a). Studies have characterized the biophysical and biochemical properties of G6Pase; however, the structure and substrate recognition mechanism of G6Pase remain unclear.

View Article and Find Full Text PDF

Enhancing nitrogen (N) fixation in rice plants can reduce N fertilizer application and contribute to sustainable rice production, particularly under low-N conditions. However, detailed microbial and metabolic characterization of N fixation in rice stems, unlike in the well-studied roots, has not been investigated. Therefore, the aim of this study was to determine the active N-fixing sites, their diazotroph communities, and the usability of possible carbon sources in stems compared with roots.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!