The activity of the light (L) chain of tetanus toxin, and of mutants constructed by site-directed mutagenesis, was studied by expression and purification of the proteins from E. coli. Wild-type recombinant L chain (pTet87) was active in the inhibition of exocytosis from cultured bovine adrenal chromaffin cells, although at a level 5-15% of that of L chain purified from tetanus toxin. L chain mutants which terminated at Leu-438 (pTet89), or which contained a Cys-to-Ser mutation at residue 439 (pTet88) were equally as active as the full-length recombinant protein. The reduced activity of pTet87 L chain correlated with C-terminal proteolysis of the protein upon purification. A tryptic fragment derived from native light chain and which terminated at Leu-434 also showed reduced activity in the exocytosis assay, consistent with a requirement of the C-terminal region of the L chain for maximal activity. pTet87 L chain, but neither of the mutants, could be associated with purified H (heavy) chain to form a covalent dimer which induced the symptoms of tetanus in mice. The ability to form biologically active toxin using recombinant L chain will be of great value in structure-function studies of tetanus toxin.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0014-5793(93)81343-xDOI Listing

Publication Analysis

Top Keywords

tetanus toxin
16
light chain
12
chain
11
biologically active
8
chain tetanus
8
recombinant chain
8
chain mutants
8
reduced activity
8
activity ptet87
8
ptet87 chain
8

Similar Publications

Tetanus is a severe neurological condition triggered by the toxin of , resulting in extreme muscle stiffness and spasms. Although vaccination can prevent it, without treatment, tetanus carries a high risk of death due to respiratory failure and autonomic disturbances. This case report describes a 24-year-old Indian male who developed tetanus after branding (a traditional procedure for jaundice in rural India) on his wrist.

View Article and Find Full Text PDF

25-Hydroxycholesterol modulates synaptic vesicle endocytosis at the mouse neuromuscular junction.

Pflugers Arch

January 2025

Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, RT, Russia.

Many synaptic vesicles undergo exocytosis in motor nerve terminals during neuromuscular communication. Endocytosis then recovers the synaptic vesicle pool and presynaptic membrane area. The kinetics of endocytosis may shape neuromuscular transmission, determining its long-term reliability.

View Article and Find Full Text PDF

An Unexpected Case of Generalized Tetanus.

Cureus

December 2024

Intensive Care Unit, Unidade Local de Saúde da Região de Aveiro, Aveiro, PRT.

Tetanus is a disease of the nervous system caused by a toxin produced by , an anaerobe found in high concentrations in the soil. The occurrence of tetanus is related to contaminated traumatic wounds, and most patients have had some failure in their immunization. However, there are rare case reports of generalized tetanus in patients with proper vaccination schemes who failed to receive appropriate prophylaxis after high-risk exposure.

View Article and Find Full Text PDF

Tetanus neurotoxins (TeNT) and botulinum neurotoxins (BoNTs) are closely related ~150 kDa protein toxins that together comprise the group of clostridial neurotoxins (CNTs) expressed by various species of . While TeNT is expressed as a single polypeptide, BoNTs are always produced alongside multiple non-toxic proteins that form a stabilizing complex with BoNT and are encoded in a conserved toxin gene cluster. It is unknown how evolved without a similar gene cluster and why complex-free TeNT is secreted as a stable and soluble protein by , whereas complexing proteins appear to be essential for BoNT stability in culture supernatants of .

View Article and Find Full Text PDF

The discovery of microbial toxins as the primary factors responsible for disease manifestations and the discovery that these toxins could be neutralised by antitoxins are linked to the birth of immunology. In the late 19th century, the serum or plasma of animals or patients who had recovered from infectious diseases or who had been immunised with a relevant antigen began to be used to treat or prevent infections. Before the advent of widespread vaccination campaigns, antitoxins played a key role in the treatment and prevention of diseases such as diphtheria and tetanus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!