In order to study the activation mechanism of heterotrimeric G-proteins by agonist-liganded receptors, GTP gamma S binding to membranes was measured in rat adenohypophyseal cells after addition of dopamine (DA) or vasoactive intestinal peptide (VIP), which, respectively, inhibit and activate pituitary adenylyl cyclase. G-protein subunit present in anterior pituitary cells was characterized by either ADP-ribosylation catalysed by Bordetella pertussis and cholera toxins or by immunoblot using specific antisera. Binding of GTP gamma S was found to depend upon GTP gamma S and Mg2+ concentrations; it was sensitive to pretreatment of the cells with cholera and Bordetella pertussis toxins (IAP). DA increased binding of the nucleotide. Paradoxically, VIP decreased the rate of GTP gamma S binding; the effect was suppressed by prior treatment of the cells with either cholera toxin or IAP. VIP also increased [33P]ADPribose incorporation in Gi/Go-proteins catalysed by IAP. Forskolin was also able to decrease GTP gamma S binding, thus suggesting that the binding of forskolin with the adenylyl cyclase catalytic unit might activate Gs proteins through an increased interaction between Gs and adenylyl cyclase. Taken together, these results suggest that VIP, as well as forskolin, may both accelerate the activation of Gs and suppress the inhibitory effect of activated Gi/Go-proteins. Interactions between Gs and Gi/Go subunits mediated by beta gamma and/or adenylyl cyclase might thus result in a kinetic coupling of transduction pathways involving distinct G-proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0898-6568(93)90064-s | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!