Effects of brefeldin A and accessory proteins on association of ADP-ribosylation factors 1, 3, and 5 with Golgi.

J Biol Chem

Laboratory of Cellular Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892.

Published: May 1993

ADP-ribosylation factors (ARFs) are approximately 20-kDa guanine nucleotide-binding proteins initially identified by their ability to enhance in vitro cholera toxin-catalyzed ADP-ribosylation and subsequently shown to participate in vesicular transport in the Golgi and other cellular compartments. By cDNA and genomic cloning, at least six mammalian ARFs were identified. Brefeldin A (BFA) disrupts Golgi membranes and inhibits binding of soluble high molecular weight proteins to Golgi fractions. We examined the effects of BFA on binding of ARF1, -3, and -5 to a Golgi fraction in the presence of an ATP-regenerating system and a fraction of soluble, high molecular weight, accessory proteins (SAP), presumably containing complexes identified by others as coatomers that are involved in vesicular transport. ARF binding in all instances was dependent on guanosine 5'-O-(3-thiotriphosphate) and increased by the ATP-regenerating system. Binding of ARF1 and -3, but not ARF5, was enhanced by SAP. BFA inhibited the SAP-dependent, but not the SAP-independent, binding of ARF1 and -3. It had no effect on the increment in binding produced by an ATP-regenerating system. B36, an inactive derivative of BFA, did not inhibit SAP-dependent binding of ARF1 and -3. Binding of ARF5, which was SAP-independent, was not affected by BFA. These observations are consistent with the conclusion that mammalian ARFs differ in their dependence on accessory proteins for interaction with Golgi and, perhaps, other cellular membranes and that BFA specifically inhibits SAP-dependent ARF binding.

Download full-text PDF

Source

Publication Analysis

Top Keywords

binding arf1
16
accessory proteins
12
atp-regenerating system
12
binding
9
adp-ribosylation factors
8
vesicular transport
8
golgi cellular
8
mammalian arfs
8
soluble high
8
high molecular
8

Similar Publications

Dietary limonin alleviates Typhimurium-induced colitis dual targeting virulence SopB and SopE2 and inhibiting RAC1/CDC42/Arp2/3 pathway and regulating gut microbiota.

Food Funct

January 2025

State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.

serovar Typhimurium (STM) causes severe colitis, necessitating the development of effective drugs. Here, the dockings of limonin with the STM T3SS-1 virulence factor SopB or SopE2 showed strong binding activity and was verified by CETSA and DARTS assays . Limonin inhibited the enzyme activities and expression of SopB and SopE2 .

View Article and Find Full Text PDF

ASAP1 is a multidomain Arf GTPase-activating protein (ArfGAP) that catalyzes GTP hydrolysis on the small GTPase Arf1 and is implicated in cancer progression. The PH domain of ASAP1 enhances its activity greater than 7 orders of magnitude but the underlying mechanisms remain poorly understood. Here, we combined Nuclear Magnetic Resonance (NMR), Molecular Dynamic (MD) simulations and mathematical modeling of functional data to build a comprehensive structural-mechanistic model of the complex of Arf1 and the ASAP1 PH domain on a membrane surface.

View Article and Find Full Text PDF

A Commander-independent function of COMMD3 in endosomal trafficking.

bioRxiv

December 2024

Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA.

Endosomal recycling is a branch of intracellular membrane trafficking that retrieves endocytosed cargo proteins from early and late endosomes to prevent their degradation in lysosomes. A key player in endosomal recycling is the Commander complex, a 16-subunit protein assembly that cooperates with other endosomal factors to recruit cargo proteins and facilitate the formation of tubulo-vesicular carriers. While the crucial role of Commander in endosomal recycling is well established, its molecular mechanism remains poorly understood.

View Article and Find Full Text PDF

Ginsenoside Ro improves Salmonella Typhimurium-induced colitis through inhibition of the virulence factors SopB and SopE2 via the RAC1/CDC42/ARP2/3 pathway.

FASEB J

December 2024

State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.

Salmonella enterica serovar Typhimurium (S. Typhimurium) poses a serious threat to human and animal health, and there is an urgent need to develop new therapeutic agents. In our in vivo study, ginsenoside Ro (Ro) reduced the mortality rate of S.

View Article and Find Full Text PDF

Adaptor protein complex-3 (AP-3) mediates cargo sorting from endosomes to lysosomes and lysosome-related organelles. Recently, it was shown that AP-3 adopts a constitutively open conformation compared to the related AP-1 and AP-2 coat complexes, which are inactive until undergoing large conformational changes upon membrane recruitment. How AP-3 is regulated is therefore an open question.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!