BCG-induced protection in guinea pigs vaccinated and challenged via the respiratory route.

Tuber Lung Dis

Département de Physiopathologie Expérimentale, Institut Pasteur, Paris, France.

Published: February 1993

Since studies on cellular immune responses have demonstrated the role of the mucosal lymphoid system of the respiratory tract, we have studied responses obtained from the local respiratory route, compared to the systemic intradermal route, of BCG immunization. Guinea pigs vaccinated with different doses of BCG via both routes served to follow lymphoid cell proliferation, hilar lymph node and lung BCG clearance, lung granuloma formation and protection induced after virulent challenge. Results demonstrate that the aerogenic route of vaccination with BCG has no harmful side-effects for the host. In comparison with the intradermal route of vaccination, aerogenic vaccination with 10(5) BCG cfu induced higher local cellular immune responses and a substantially improved protective effect.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0962-8479(93)90067-8DOI Listing

Publication Analysis

Top Keywords

guinea pigs
8
pigs vaccinated
8
respiratory route
8
cellular immune
8
immune responses
8
intradermal route
8
route vaccination
8
route
5
bcg
5
bcg-induced protection
4

Similar Publications

Background: Machupo virus (MACV) is a New World mammarenavirus (hereafter referred to as "arenavirus") and the etiologic agent of Bolivian hemorrhagic fever (BHF). No vaccine or antiviral therapy exists for BHF, which causes up to 35% mortality in humans. New World arenaviruses evolve separately in different locations.

View Article and Find Full Text PDF

Cochlear implants are well established devices for treating severe hearing loss. However, due to the trauma caused by the insertion of the electrode and the subsequent formation of connective tissue, their clinical effectiveness varies. The aim of the current study was to achieve a long-term reduction in connective tissue growth and impedance by combining surface patterns on the electrode array with a poly-L-lactide coating containing 20% diclofenac.

View Article and Find Full Text PDF

Effects of cytochalasin D on relaxation process of skinned taenia cecum and carotid artery from guinea pig.

J Physiol Sci

January 2025

Department of Frontier Health Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashiogu, Arakawa-Ku, 116-8551, Tokyo, Japan. Electronic address:

Actin linked regulatory mechanisms are known to contribute contraction/relaxation in smooth muscle. In order to clarify whether modulation of polymerization/depolymerization of actin filaments affects relaxation process, we examined the effects of cytochalasin D on relaxation process by Ca removal after Ca-induced contraction of β-escin skinned (cell membrane permeabilized) taenia cecum and carotid artery preparations from guinea pigs. Cytochalasin D, an inhibitor of actin polymerization, significantly suppressed the force during relaxation both in skinned taenia cecum and carotid artery.

View Article and Find Full Text PDF

Itaconate mechanism of action and dissimilation in .

Proc Natl Acad Sci U S A

January 2025

Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster 3rd Milestone, Faridabad, Haryana 121001, India.

Itaconate, an abundant metabolite produced by macrophages upon interferon-γ stimulation, possesses both antibacterial and immunomodulatory properties. Despite its crucial role in immunity and antimicrobial control, its mechanism of action and dissimilation are poorly understood. Here, we demonstrate that infection of mice with increases itaconate levels in lung tissues.

View Article and Find Full Text PDF

Phosphate rebinding induces force reversal via slow backward cycling of cross-bridges.

Front Physiol

January 2025

Institute of Vegetative Physiology, University of Cologne, Köln, Germany.

Objective: Previous studies on muscle fibers, myofibrils, and myosin revealed that the release of inorganic phosphate (P) and the force-generating step(s) are reversible, with cross-bridges also cycling backward through these steps by reversing force-generating steps and rebinding P. The aim was to explore the significance of force redevelopment kinetics (rate constant ) in cardiac myofibrils for the coupling between the P binding induced force reversal and the rate-limiting transition for backward cycling of cross-bridges from force-generating to non-force-generating states.

Methods: and force generation of cardiac myofibrils from guinea pigs were investigated at 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!