Hemoglobin M Milwaukee (beta67E11 Val leads to Glu) is a naturally occurring valency hybrid containing two permanently oxidized hemes on the beta chains. In this mutant, the two abnormal beta chains cannot combine with ligands whereas the two alpha chains are normal and can combine with oxygen with a Hill coefficient varying from 1.1 to 1.3 [Udem et al. (1970), J Mol. Biol. 48, 489]. High-resolution proton nuclear magnetic resonance spectroscopy at 250 MHz has been used to investigate the exchangeable, ring-current shifted, ferrous and ferric hyperfine shifted resonances of Hb M Milwaukee in the absence and presence of organic phosphates. The alpha-heme environment, as manifested by the ring-current shifted resonances in the liganded form as well as the ferrous hyperfine shifted resonances in unliganded form, and subunit interactions, as manifested by the exchangeable resonances, are similar in Hb M Milwaukee to those in normal adult human hemoglobin. Organic phosphates can partially or completely inhibit the structural transformation which normally accompanies the binding of oxygen or carbon monoxide to Hb M Milwaukee. Upon stepwise addition of oxygen to deoxy Hb M Milwaukee, the hyperfine shifted resonance spectra of ferric beta chains show features which cannot be attributed to either fully deoxy or oxy species. However, the spectra for partially oxygenated Hb M Milwaukee can be described as an appropriately weighted average of the spectra of sero, singly, and doubly oxygenated species. The ferric hyperfine shifted resonance spectrum of the singly oxygenated intermediate has been calculated by a method employing least-squares analysis of the spectra of partially oxygenated Hb M Milwaukee at several values of oxygen saturation. The spectrum of this intermediate exhibits features which cannot be accounted for by a two-structure model. The present results are consistent with a sequential model for the oxygenation of this mutant hemoglobin. In view of the similarities between normal adult hemoglobin and Hb M Milwaukee, it is suggested that a two-state concerted allosteric model does not provide an adequate description of the structure-function relationship in normal adult hemoglobin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi00626a033 | DOI Listing |
We study resonance redistribution mechanisms inside a hot vapor cell. This is achieved by pumping cesium atoms on the 6S→6P resonance and subsequently probing the velocity distribution of the 6P population by a linear absorption experiment on the 6P→16S or 6P→15D transitions at 514 nm and 512 nm, respectively. We demonstrate that despite the existence of thermalization processes, traces of the initial velocity selection, imposed by the pump, survive in hyperfine levels of the intermediate (6P) state.
View Article and Find Full Text PDFInt J Stroke
January 2025
Department of Neurosurgery and Interventional Neuroradiology, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, National Center for Neurological Disorders, Beijing, China.
Rationale: The Chemical Optimization of Cerebral Embolectomy (CHOICE) trial suggested that the administration of intra-arterial alteplase after successful endovascular thrombectomy (EVT) may improve neurological outcomes in patients with acute ischemic stroke due to large-vessel occlusion (AIS-LVO) in the anterior circulation. However, the use of adjunctive intra-arterial alteplase following successful EVT in acute posterior circulation stroke remains unexplored.
Aims: This study aims to investigate the efficacy and safety of intra-arterial alteplase after successful EVT for AIS-LVO in the posterior circulation.
J Chem Theory Comput
January 2025
Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany.
Density functional theory has become the workhorse of quantum physics, chemistry, and materials science. Within these fields, a broad range of applications needs to be covered. These applications range from solids to molecular systems, from organic to inorganic chemistry, or even from electrons to other Fermions, such as protons or muons.
View Article and Find Full Text PDFPhys Chem Chem Phys
December 2024
Department of Chemistry, Redeemer University, Ancaster, ON, Canada.
A modified shifted-echo PIETA pulse sequence is developed to acquire natural abundance Si 2D -resolved spectra in crystalline silicates. The sequence is applied to the highly siliceous zeolites Sigma-2 and ZSM-12. The 2D -resolved spectra are used to develop a silicate framework structure refinement strategy based on Si-O, O-O, and Si-Si distance restraints and analytical relationships between local structure and Si chemical shifts and geminal couplings.
View Article and Find Full Text PDFInteractions (Cham)
March 2024
Institute of Physics, The University of Tokyo, Komaba, Meguro-ku, 153-8902 Tokyo Japan.
We have developed a microwave spectrometer for a measurement of the Lamb shift of antihydrogen atoms towards the determination of the antiproton charge radius. The spectrometer consists of two consecutive apparatuses, of which the first apparatus, (HFS), filters out hyperfine states and pre-selects the state, and the second apparatus, (MWS), sweeps the frequency around the target transition to obtain the spectrum. We optimized the geometry of the apparatuses by evaluating the S-parameter that represents the ratio of the reflected microwave signal over the input, utilizing microwave simulations based on the finite element method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!