A polymeric reagent of the type P approximately NHCOCH2Cl (where P is Bio-Gel P-100) was prepared. This polymer covalently bound peptides and proteins specifically at methionine residues under acidic conditions in the presence of a small amount of sodium iodide. Treatment of the polymer-peptide conjugate with 2-mercaptoethanol resulted in essentially complete removal of the peptide with regeneration of intact methionyl residues. In an alternative way, the polymer was suspended for 2 h in boiling water. This treatment resulted in the conversion of the bound methionyl residues to homoserine residues and cleavage and liberation of the bound peptides. The polymeric reagent was successfully applied to the separation of methionyl peptides from peptide mixtures and for specific covalent binding of enzymes and biologically active proteins via their exposed methionyl residues, with the retention of their biological activity.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi00626a029DOI Listing

Publication Analysis

Top Keywords

polymeric reagent
12
methionyl residues
12
covalent binding
8
peptides proteins
8
bound peptides
8
residues
5
selective covalent
4
binding methionyl-containing
4
peptides
4
methionyl-containing peptides
4

Similar Publications

Roles and opportunities of quorum sensing in natural and engineered anaerobic digestion systems.

Water Res

January 2025

College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China. Electronic address:

Anaerobic digestion (AD) is a biological process in which anaerobic microorganisms convert organic matter into methane-rich gas, contributing to the cycling of carbon and other nutrients. Quorum sensing (QS), a microbial communication mechanism, plays a critical role in regulating population-level behaviors within AD systems. This review systematically examines the roles and applications of QS in AD, emphasizing its importance in enhancing process efficiency.

View Article and Find Full Text PDF

A Reusable Capillary Flow-Driven Microfluidic System for Abscisic Acid Detection Using a Competitive Immunoassay.

Sensors (Basel)

January 2025

Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias (INESC-MN), Rua Alves Redol, 1000-029 Lisbon, Portugal.

Point-of-care (PoC) devices offer a promising solution for fast, portable, and easy-to-use diagnostics. These characteristics are particularly relevant in agrifood fields like viticulture where the early detection of plant stresses is crucial to crop yield. Microfluidics, with its low reagent volume requirements, is well-suited for such applications.

View Article and Find Full Text PDF

In recent years, the near-infrared (NIR) fluorescence theranostic system has garnered increasing attention for its advantages in the simultaneous diagnosis- and imaging-guided delivery of therapeutic drugs. However, challenges such as strong background fluorescence signals and rapid metabolism have hindered the achievement of sufficient contrast between tumors and surrounding tissues, limiting the system's applicability. This study aims to integrate the pegylation strategy with a tumor microenvironment-responsive approach.

View Article and Find Full Text PDF

This study presents an efficient and environmentally sustainable synthesis of ZnO nanoparticles using a starch-mediated sol-gel approach. This method yields crystalline mesoporous ZnO NPs with a hexagonal wurtzite structure. The synthesized nanoparticles demonstrated remarkable multifunctionality across three critical applications.

View Article and Find Full Text PDF

Various Options for Covalent Immobilization of Cysteine Proteases-Ficin, Papain, Bromelain.

Int J Mol Sci

January 2025

Biophysics and Biotechnology Department, Voronezh State University, 1 Universitetskaya Square, 394018 Voronezh, Russia.

This study explores various methods for the covalent immobilization of cysteine proteases (ficin, papain, and bromelain). Covalent immobilization involves the formation of covalent bonds between the enzyme and a carrier or between enzyme molecules themselves without a carrier using a crosslinking agent. This process enhances the stability of the enzyme and allows for the creation of preparations with specific and controlled properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!