Background: The lifetime risk of developing breast cancer in U.S. women, often quoted as one in nine, is a commonly cited cancer statistic. However, many estimates have used cancer rates derived from total rather than the cancer-free population and have not properly accounted for multiple cancers in the same individual.
Purpose: Our purpose was to provide a revised method for calculating estimates of the lifetime risk of developing breast cancer and to aid in interpretation of the estimates.
Methods: A multiple decrement life table was derived by applying age-specific incidence and mortality rates from cross-sectional data to a hypothetical cohort of women. Incidence, mortality, and population data from 1975-1988 were used, representing the geographic areas of the National Cancer Institute's Surveillance, Epidemiology, and End Results (SEER) Program. The incidence rates reflected only the first breast primary cancer; mortality rates reflected causes other than breast cancer. The population denominator used in calculating incidence rates was adjusted to reflect only those women without previously diagnosed breast cancers in the hypothetical cohort.
Results: Our calculations showed an overall lifetime risk for developing invasive breast cancer of approximately one in eight with use of 1987-1988 SEER data, although up to age 85, it was still the commonly quoted one in nine.
Conclusion: Our estimate was calculated assuming constant age-specific rates derived from 1987-1988 SEER data. Because incidence and mortality rates change over time, conditional risk estimates over the short term (10 or 20 years) may be more reliable. A large portion of the rise in the lifetime risk of breast cancer estimated using 1975-1977 data (one in 10.6) to an estimate using 1987-1988 data (one in eight) may be attributed to 1) early detection of prevalent cases due to increased use of mammographic screening and 2) lower mortality due to causes other than breast cancer. A common misperception is that the lifetime risk estimate assumes that all women live to a particular age (e.g., 85 or 95). In fact, the calculation assumes that women can die from causes other than breast cancer at any possible age. Cutting off the lifetime risk calculation at age 85 assumes that no women develop breast cancer after that age. While the lifetime risk of developing breast cancer rose over the period 1976-1977 to 1987-1988, the lifetime risk of dying of breast cancer increased from one in 30 to one in 28, reflecting generally flat mortality trends.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jnci/85.11.892 | DOI Listing |
Ann Plast Surg
January 2025
Division of Plastic Surgery, Henry Ford Health, Detroit, MI.
Background: One-stage direct-to-implant (DTI) breast reconstruction is increasingly popular with the use of prepectoral reconstruction leading to increased demand for structural scaffolds. It is vital to determine if differences in safety profiles exist among scaffolds.
Methods: We performed a retrospective cohort study of consecutive patients in our breast cancer center undergoing DTI reconstruction.
Mol Pharm
January 2025
State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
Natural killer (NK) cell immunotherapy is a significant category in tumor therapy due to its potent tumor-killing and immunomodulatory effects. This research delves into exploring the mechanisms underlying the ability of amoxicillin to boost NK cell cytotoxicity in NK cell immunotherapy. Amoxicillin significantly enhances the cytotoxic activity of NK-92MI cells against MCF-7 cells by triggering the initiation of a cytolytic program in target cell-deficient NK-92MI cells and augmenting the degranulation level of NK-92MI cells in the presence of target cells.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China.
Carrier-free nanomedicines exhibited significant potential in elevating drug efficacy and safety for tumor management, yet their self assembly typically relied on chemical modifications of drugs or the incorporation of surfactants, thereby compromising the drug's inherent pharmacological activity. To address this challenge, we proposed a triethylamine (TEA)-mediated protonation-deprotonation strategy that enabled the adjustable-proportion self assembly of dual drugs without chemical modification, achieving nearly 100% drug loading capacity. Molecular dynamic simulations, supported by experiment evidence, elucidated the underlying self-assembly mechanism.
View Article and Find Full Text PDFPlast Reconstr Surg
February 2025
From the Division of Plastic and Reconstructive Surgery, Washington University in St. Louis School of Medicine.
Learning Objectives: After studying this article, the participant should be able to: (1) Understand the unique differences between mastopexy in aesthetic and reconstructive breast surgery. (2) Describe the approach to performing mastopexy with autoaugmentation or after explantation. (3) Have insight into the approach and decision-making process for performing mastopexy with nipple-sparing mastectomy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!