In studies with rodents, when dietary supplies of the essential nutrient Se are restricted, in most tissues there are parallel substantial losses of the element and the important antioxidant selenoenzyme glutathione peroxidase (GPx) for which it is a cofactor. In brain, however, there appears to be both a sequestration of Se and a conservation of GPx activity when dietary Se is limited. To further explore the relation between these phenomena, we have undertaken a comparison of the effects of diets low, normal and high in Se on GPx activity, and labeling of selenoproteins following short-term (72 h) in vivo exposure to 75Se, in subcellular fractions from rat brain and liver, the latter serving as a representative tissue which does not retain Se and is depleted of most GPx activity following dietary restriction. Brains and livers from animals on the three diets showed different patterns of response with respect to both GPx activity and retention of the 75Se dose. The low-Se diet (0.006 ppm) substantially reduced GPx activity in liver but not brain, while high levels (1 ppm) did not increase GPx in either tissue relative to a normal (0.1 ppm) intake. The 75Se was retained in brain homogenates and subcellular fractions to the greatest extent by rats on the restricted diet, while in liver, retention was greater in rats fed the normal supplement than in animals on either the low- or high-Se diets. Levels of non-protein-bound 75Se were higher in brain than liver and increased with dietary Se in both tissues. When proteins in brain and liver homogenates and subcellular fractions where separated by one-dimensional SDS-PAGE and exposed to X-ray film, the resulting autoradiograms revealed the existence of seven distinct selenoprotein bands in brain and eight in liver. Different patterns of selenoprotein expression were observed in subcellular fractions isolated from both tissues. Dependence of levels of individual selenoproteins on diet paralleled the effects on 75Se retention. Dietary influences on expression of protein bands tentatively identified as GPx were more pronounced in liver than brain. All of these observations provide further evidence of the unique nature of Se metabolism in brain.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0167-4838(93)90179-uDOI Listing

Publication Analysis

Top Keywords

brain liver
20
gpx activity
20
subcellular fractions
16
brain
10
comparison effects
8
selenoprotein expression
8
rat brain
8
liver
8
gpx
8
activity dietary
8

Similar Publications

Metabolic syndrome is a group of pathological disorders increasing the risk of serious diseases including cardiovascular disease, stroke, type 2 diabetes. Global widespread of the metabolic syndrome has put a heavy social burden. Interestingly, a crucial link between the metabolic syndrome and a psychiatric disorder may frequently coexist, in which certain shared mechanisms might play a role for the pathogenesis.

View Article and Find Full Text PDF

[Artificial light at night effects glucose metabolism in the developing jawbone by inhibiting melatonin secretion].

Zhonghua Kou Qiang Yi Xue Za Zhi

January 2025

Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology & School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology & Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China.

To investigate the effects of artificial light at night on the growth of mandibles in mice and its regulatory mechanisms. A mouse model of artificial light at night (night light pollution group) and normal lighting (normal light group) was established by controlling light exposure time, with 4 mice in each group. Micro-CT was employed to analyze the differences in bone quantities of the mandibles between the two groups.

View Article and Find Full Text PDF

Homozygous missense variant in causes early-onset neurodegeneration, leukoencephalopathy and autoinflammation.

J Med Genet

January 2025

Division of Clinical and Metabolic Genetics, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada

Biallelic pathogenic variants in cause a fatal autosomal recessive multisystem disorder characterized by recurrent autoinflammation, hypomyelination, progressive neurodegeneration, microcephaly, failure to thrive, liver dysfunction, respiratory chain defects and accumulation of glycogen in skeletal muscle. No missense variants in have been reported to date.We report a 6-year-old boy with microcephaly, global developmental delays, lower limb spasticity with hyperreflexia, epilepsy, abnormal brain MRI, failure to thrive, recurrent fevers and transaminitis.

View Article and Find Full Text PDF

Aescin ameliorates alcohol-induced liver injury. A possible implication of ROS / TNF-alpha / p38MAPK / caspase-3 signalling.

Food Chem Toxicol

January 2025

Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kaferelsheikh University, Kaferelsheikh, Egypt. Electronic address:

Alcoholic liver disease (ALD) is a commonly known liver disease mediated by prolonged alcohol consumption. Aescin is a triterpene saponin that can manage several conditions, including brain trauma, arthritis, venous congestion, stroke, and thrombophlebitis. Even so, studies illustrating the aescin role in ALD are scarce.

View Article and Find Full Text PDF

Attenuating hyperammonemia preserves protein synthesis and muscle mass via restoration of perturbed metabolic pathways in bile duct-ligated rats.

Metab Brain Dis

January 2025

Hepato-Neuro Laboratory, Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, 900, Rue Saint-Denis - Pavillon R, R08.422, Montréal (Québec), H2X 0A9, Canada.

Sarcopenia and hepatic encephalopathy (HE) are complications of chronic liver disease (CLD), which negatively impact clinical outcomes. Hyperammonemia is considered to be the central component in the pathogenesis of HE, however ammonia's toxic effects have also been shown to impinge on extracerebral organs including the muscle. Our aim was to investigate the effect of attenuating hyperammonemia with ornithine phenylacetate (OP) on muscle mass loss and associated molecular mechanisms in rats with CLD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!