AI Article Synopsis

Article Abstract

1 The effects of long-term angiotensin-converting enzyme inhibition with quinapril on arterial function were studied in spontaneously hypertensive rats, Wistar-Kyoto rats serving as normotensive controls. 2 Adult hypertensive animals were treated with quinapril (10 mg kg-1 day-1) for 15 weeks, which reduced their blood pressure and the concentrations of atrial natriuretic peptide in plasma and ventricular tissue to a level comparable with that in normotensive rats. 3 Responses of mesenteric arterial rings in vitro were examined at the end of the study. Compared with normotensive and untreated hypertensive rats, responses to noradrenaline were attenuated in hypertensive animals on quinapril, both force of contraction and sensitivity being reduced. Quinapril also attenuated maximal contractions but not sensitivity to potassium chloride. Nifedipine less effectively inhibited vascular contractions in normotensive and quinapril-treated than in untreated hypertensive rats. 4 Arterial relaxation responses by endothelium-dependent (acetylcholine) and endothelium-independent (sodium nitrite, isoprenaline) mechanisms were similar in normotensive and quinapril-treated rats and more pronounced than in untreated hypertensive rats. 5 Cell membrane permeability to ions was evaluated by means of potassium-free solution-induced contractions of endothelium-denuded denervated arterial rings. These responses were comparable in normotensive and quinapril-treated rats and less marked than in untreated hypertensive rats. 6 Intracellular free calcium concentrations in platelets and lymphocytes, measured by the fluorescent indicator quin-2, were similar in normotensive and quinapril-treated rats and lower than in untreated hypertensive rats. 7 In conclusion, quinapril treatment improved relaxation responses and attenuated contractions in arterial smooth muscle of hypertensive rats. These changes may be explained by diminished cytosolic free calcium concentration, reduced cell membrane permeability, and alterations in dihydropyridine-sensitive calcium channels following long-term angiotensin-converting enzyme inhibition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1908145PMC
http://dx.doi.org/10.1111/j.1476-5381.1993.tb13495.xDOI Listing

Publication Analysis

Top Keywords

hypertensive rats
32
untreated hypertensive
20
normotensive quinapril-treated
16
rats
13
quinapril-treated rats
12
hypertensive
10
quinapril treatment
8
arterial smooth
8
smooth muscle
8
spontaneously hypertensive
8

Similar Publications

Although long-term high dietary sodium consumption often aggravates hypertension and bone loss, sodium in the intestinal lumen has been known to promote absorption of nutrients and other ions, e.g., glucose and calcium.

View Article and Find Full Text PDF

Renal nerves and hypertension contribute to impaired proximal tubule megalin-mediated albumin uptake in renovascular hypertensive rats.

Hypertens Res

January 2025

Department of Physiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.

Proteinuria, especially albuminuria, serves as an independent risk factor for progression in cardiovascular and renal diseases. Clinical and experimental studies have demonstrated that renal nerves contribute to renal dysfunction in arterial hypertension (AH). This study hypothesizes that renal nerves mediate the mechanisms of protein endocytosis by proximal tubule epithelial cells (PTEC) and glomerular function; with dysregulation of the renal nerves contributing to proteinuria in Wistar rats with renovascular hypertension (2-kidney, 1-clip model, 2K-1C).

View Article and Find Full Text PDF

Objectives: To explore the mechanism of Granules (QDG) for alleviating brain damage in spontaneously hypertensive rats (SHRs).

Methods: Twelve 5-week-old SHRs were randomized into SHR control group and SHR+QDG group treated with QDG by gavage at the daily dose of 0.9 g/kg for 12 weeks.

View Article and Find Full Text PDF

Estrogen significantly impacts women's health, and postmenopausal hypertension is a common issue characterized by blood pressure fluctuations. Current control strategies for this condition are limited in efficacy, necessitating further research into the underlying mechanisms. Although metabolomics has been applied to study various diseases, its use in understanding postmenopausal hypertension is scarce.

View Article and Find Full Text PDF

Background: Prostaglandin E (PGE) in the rostral ventrolateral medulla (RVLM) has been recognized as a pivotal pressor substance in hypertension, yet understanding of its effects and origins in the RVLM remains largely elusive. This study aimed to elucidate the pivotal enzymes and molecular mechanisms underlying PGE synthesis induced by central Ang II (angiotensin II) and its implications in the heightened oxidative stress and sympathetic outflow in hypertension.

Methods And Results: RVLM microinjections of PGE and Tempol were administered in Wistar-Kyoto rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!