The goldfish retina grows throughout the animal's life, primarily by a balloon-like expansion. With this expansion, dendritic arbors of ganglion cells show scaled growth; arbors increase in size from small to large with no change in their architecture (Hitchcock & Easter, 1986; Bloomfield & Hitchcock, 1991). The study reported here showed that ganglion cell arbors acquire new synapses with this growth. Arbors from a single type of ganglion cell in retinas of small, young and large, old fish were intracellularly filled with horseradish peroxidase, examined electron microscopically, and the synapses contacting them counted and compared (small arbors vs. large arbors). The small and large arbors had similar numbers and orders of dendritic branches (i.e. similar architectures), but the large arbors were significantly larger than the small ones. The increase in arbor size was correlated with a 2.7x and 1.9x increase in the number of ribbon and conventional synaptic contacts, respectively. The addition of new synapses is proposed as a mechanism by which the signaling properties of the enlarging ganglion cells can remain constant.

Download full-text PDF

Source
http://dx.doi.org/10.1017/s095252380000362xDOI Listing

Publication Analysis

Top Keywords

ganglion cells
12
large arbors
12
acquire synapses
8
arbors
8
growth arbors
8
small large
8
ganglion cell
8
ganglion
5
small
5
large
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!