C8H10O2Se, M(r) = 217.13, monoclinic, P2(1)/n, a = 9.511 (2), b = 15.741 (3) c = 11.467 (2) A, beta = 91.31 (2) degrees, V = 1716.3 (6) A3, Z = 8 (two molecules per asymmetric unit), Dx = 1.68 Mg m-3, lambda (Mo K alpha) = 0.71069 A, mu = 4.19 mm-1, F(000) = 864, T congruent to 295 K, R(obs) = 0.060 for 1944 unique reflections with I > 2 sigma (I). The two molecules in the asymmetric unit are very similar; they differ only in the conformation of the ethyl side chain. There is considerable disorder in one molecule, that possibly can be represented by torsion about the Se-C(ethyl) bond. In each case the O atoms of the SeO2 group lie near the plane of the phenyl group. Se-O ... H-C interactions appear to be the only significant intermolecular interactions. These involve an H atom of the alpha-C atom of the ethyl group in addition to the H atoms of the phenyl group.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1107/s0108270192008230 | DOI Listing |
Cell
January 2025
Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands. Electronic address:
Structural maintenance of chromosomes (SMC) complexes organize the genome via DNA loop extrusion. Although some SMCs were reported to do so symmetrically, reeling DNA from both sides into the extruded DNA loop simultaneously, others perform loop extrusion asymmetrically toward one direction only. The mechanism underlying this variability remains unclear.
View Article and Find Full Text PDFAnal Sci
January 2025
Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-Ku, Sendai, 980-8578, Japan.
The diverse functional roles of RNA within cells have led to a growing interest in developing RNA-binding fluorescent probes to investigate RNA functions. In particular, the probes for double-stranded RNA (dsRNA) structures are of significant value given the importance of the secondary and tertiary RNA structures on their biologic functions. This review highlights our recent efforts on the development of triplex-forming peptide nucleic acid (TFP)-based probes for fluorescence sensing of dsRNA structures.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, A-1190 Austria.
Chemical 1,1'-glycosylation for the synthesis of non-reducing disaccharides is complicated by the need to simultaneously control the stereochemistry at two anomeric centers. While considerable progress has been made in the synthesis of α,α-disaccharides, the assembly of 1,1'-β,β- and 1,1'-β,α-linked non-reducing sugars has received comparatively less attention. Many naturally occurring non-reducing disaccharides and their biologically active mimetics feature asymmetrically located functional groups at different positions on the two pyranose rings, highlighting the demand for reliable stereoselective methods to synthesize fully orthogonally protected 1,1'-conjugated sugars suitable for targeted functionalisation to create important biomolecules.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
Taming highly enolizable aldehydes for catalytic asymmetric C-C coupling with nucleophiles remains an elusive challenge compared to widely explored simple alkyl or aryl aldehydes. Herein, we use ThDP-dependent enzymes to realize the direct C-C coupling of highly enolizable 2-phosphonate aldehydes with in situ-generated dynamically reversible nucleophiles (acyl anions). Unlike NHC-mediated reactions that yield complex mixtures of multiple adducts, our enzymatic process selectively produces biologically active β-hydroxy phosphonates with high yields (up to 95%) and excellent enantioselectivities (up to 99% ee).
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States.
In this Perspective, we highlight the emergence of target-oriented syntheses of complex molecules composed of Si-Si (oligosilanes) rather than C-C bonds. Saturated oligosilanes structurally resemble alkanes with respect to a tetrahedral geometry, a preference for a staggered conformation in linear chains, the ability to form stable small rings, and tetrahedral stereochemistry at asymmetrically functionalized Si centers. There are also critical differences, for example, differences in multiple bonding and the ability to form penta- and hexacoordinated structures, that mean that chemical reactivity and, in particular, rules for stereoselective synthesis do not cleanly translate from carbon to silicon.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!