5-HT is a candidate for the excitatory transmitter at the neuromuscular junction in trematodes including Fasciola hepatica. This study has determined the response of a muscle strip preparation from Fasciola hepatica to 5-HT and a range of agonists that distinguish between the vertebrate receptor 5-HT subtypes. 5-HT increased the resting tone and the rhythmic activity of the muscle strip. Of the 19 compounds tested, only 10 had an effect similar to 5-HT and all but 2 of these were tryptamine compounds. 5-HT was more potent than tryptamine whilst 4-OH-tryptamine had no effect, suggesting that the response is mediated by a 5-HT rather than a tryptamine receptor. 5-Fluorotryptamine and 5-carboxyamidotryptamine were the most potent agonists. 8-OH-DPAT also mimicked the effect of 5-HT, though less potently. Assuming that these agents elicit their response through a common receptor, this suggests the presence of a 5-HT receptor with similar properties in terms of agonist recognition as the vertebrate 5-HT1 class of receptor involved in controlling Fasciola muscle motility.

Download full-text PDF

Source
http://dx.doi.org/10.1017/s0031182000074837DOI Listing

Publication Analysis

Top Keywords

fasciola hepatica
12
5-ht
9
muscle strip
8
5-ht tryptamine
8
receptor
6
pharmacological profile
4
profile 5-hydroxytryptamine
4
5-hydroxytryptamine receptor
4
fasciola
4
receptor fasciola
4

Similar Publications

Plasmin, the final product of fibrinolysis, is a broad-spectrum serine protease that degrades extracellular matrix (ECM) components, a function exploited by multiple pathogens for dissemination purposes. The trematode Fasciola hepatica is the leading cause of fasciolosis, a major disease of livestock and an emerging zoonosis in humans. Infection success depends on the ability of F.

View Article and Find Full Text PDF

Construction of Immune Single Domain Antibodies Library for Development of Specific Nanobodies Using Phage Display Strategy.

Recent Pat Biotechnol

January 2025

Center of Excellence in Recombinant Biopharmaceutical Proteins, Biochemistry and Molecular Biology Department, Theodor Bilharz Research Institute, Giza, Egypt.

Background: poses a considerable global public health challenge. In Egypt, approximately 60% of the inhabitants in the Northern and Eastern areas of the Nile Delta are affected by this parasite, whereas the Southern region experiences a significantly lower infection rate of 6%.

Aim: Construction of an immune phage display Nbs library based on the VHH framework for selecting -specific Nbs for seeking cost-effective, sensitive, and specific diagnostic tools for rapidly detecting mansoni.

View Article and Find Full Text PDF

The Northern Bolivian Altiplano is the fascioliasis endemic area where the highest prevalences and intensities in humans have been recorded. In this hyperendemic area of human fascioliasis, the disease is caused only by Fasciola hepatica and transmitted by Galba truncatula, the sole lymnaeid species present in the area. When analysing the link between global warning and the recently reported geographical spread of lymnaeid populations to out-border localities, a marked heterogeneous climatic change was found throughout the endemic area.

View Article and Find Full Text PDF

Mass ivermectin (IVM) treatment of livestock (MITL) is under consideration as a malaria control tool as IVM-treated livestock are lethal to blood-feeding Anopheles mosquitoes. MITL is routinely used as a prophylaxis in livestock to reduce the burden and transmission of helminth infections. Recently, there has been a shift in the veterinary IVM market in Southeast Asia wherein nearly all standard IVM formulations are now co-formulated with clorsulon (CLO).

View Article and Find Full Text PDF

Background: Fascioliasis represents one of the most significant parasitic and foodborne zoonotic diseases in the world. Resistance to currently deployed human and veterinary flukicides is a growing health problem. Zinc oxide nanoparticles (ZnO-NPs) have developed enormous importance in nanomedicine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!