Fifteen tripeptide analogues of leupeptin containing either a C-terminal argininal or lysinal were synthesized. The synthetic analogues were tested, using spectrophotometric assay techniques, as inhibitors of trypsin, kallikrein, thrombin, plasmin, and cathepsin B. The lysinal analogues were fairly selective as inhibitors of cathepsin B activity. Acetyl-L-leucyl-L-valyl-L-lysinal (21) showed a stronger inhibition of cathepsin B (IC50 = 4 nanomolar) than leupeptin. Acetyl-L-phenylalanyl-L-valyl-L-argininal (2i) was found to be a good inhibitor of cathepsin B (IC50 = 0.039 microM), thrombin (IC50 = 1.8 microM), and plasmin (IC50 = 2.2 microM).

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm00060a016DOI Listing

Publication Analysis

Top Keywords

cathepsin ic50
8
ic50 microm
8
inhibition studies
4
studies serine
4
serine thiol
4
thiol proteinases
4
proteinases leupeptin
4
analogues
4
leupeptin analogues
4
analogues fifteen
4

Similar Publications

The main protease (M) of SARS-CoV-2 is a key drug target for the development of antiviral therapeutics. Here, we designed and synthesized a series of small-molecule peptidomimetics with various cysteine-reactive electrophiles. Several compounds were identified as potent SARS-CoV-2 M inhibitors, including compounds (IC = 0.

View Article and Find Full Text PDF

Discovery of a Potent Triazole-Based Reversible Targeted Covalent Inhibitor of Cruzipain.

ACS Med Chem Lett

January 2025

Sustainable Chemistry for Metals and Molecules, Department of Chemistry, KU Leuven, Leuven 3000, Belgium.

Cruzipain (CZP) is an essential cysteine protease of , the etiological agent of Chagas disease, and a promising druggable target. To date, no CZP inhibitors have reached clinical use, with research efforts mostly hampered by insufficient potency, limited target selectivity or lack of bioactivity translation from the isolated enzyme to the parasite in cellular environments. In this study, we report the design of , a 1,2,3-triazole-based targeted covalent inhibitor with nanomolar potency (IC = 28 nM) and null inhibition of human cathepsin L.

View Article and Find Full Text PDF

Review of Cathepsin K Inhibitor Development and the Potential Role of Phytochemicals.

Molecules

December 2024

Department of Biology Education, Daegu University, 201, Daegudae-ro, Gyeongsan-si 38453, Gyeongsangbuk-do, Republic of Korea.

Cathepsin K plays a pivotal role in bone resorption and has emerged as a prominent therapeutic target for treating bone-related diseases such as osteoporosis. Despite significant advances in synthetic inhibitor development, none have achieved FDA approval due to safety and efficacy challenges. This review highlights the potential of phytochemicals as alternative inhibitors, emphasizing their natural origin, structural diversity, and minimal adverse effects.

View Article and Find Full Text PDF

Nanomolar activity of coumarin-3-thiosemicarbazones targeting Trypanosoma cruzi cruzain and the T. brucei cathepsin L-like protease.

Eur J Med Chem

February 2025

Biological and Molecular Chemistry Research Group, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, AC. Simões Campus, Alagoas, Maceió, 57072-970, Brazil. Electronic address:

Trypanosoma cruzi (T. cruzi) and Trypanosoma brucei (T. brucei) urgently demand innovative drug development due to their impact on public health worldwide.

View Article and Find Full Text PDF

Cathepsin C (Cat C) is a potential candidate for addressing inflammatory conditions associated with neutrophil serine proteases (NSPs). The high reactivity of electrophilic warheads and the metabolic instability of peptide structures are among the primary challenges in developing potent cathepsin C inhibitors. Compound 36, a lead compound derived from compound 1 through structure-based drug design and structure-activity relationship (SAR), exhibited strong Cat C inhibitory activity with an IC value of 437 nM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!