Isozyme patterns differ widely among the classical type (class I) of mammalian alcohol dehydrogenases. For the rabbit enzyme, the possibility of isozymes has been reported but structural evidence is lacking. This system was now studied at both the mRNA/cDNA and protein levels. Ten cDNA clones, coding for class-I alcohol dehydrogenase, were isolated from a rabbit liver cDNA library using a human DNA fragment as probe. The cDNA spanned 1296 bp, including the entire coding region. All clones coded for the same polypeptide and Northern blots identified a single mRNA corresponding to about 1.5 kb. Comparison of two protein forms (CC and BC) by HPLC peptide fingerprinting and structural analysis revealed peptide segments identical in amino acid sequence. Consequently, direct protein analyses and Northern blots show the presence of only one primary translation product. The data suggest that lagomorphic alcohol dehydrogenase, like the rodent enzyme, is not as isozyme rich as it may appear superficially, and that secondary modifications contribute substantially to mammalian alcohol dehydrogenase multiplicity. The active center of the rabbit enzyme suggests similarities to the horse S, human gamma, and rat enzyme structures, compatible with a steroid dehydrogenase activity shown experimentally. Typical class-I properties were established by direct analysis and confirmed by structural properties (Km for cyclohexanol 0.8-1.1 mM, for ethanol 1.6-1.9 mM). The isozyme versus species differences mark the variability of class-I alcohol dehydrogenase versus class III and suggest a parallelism between rapid mutational differences and frequent duplicatory events.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1432-1033.1993.tb17731.xDOI Listing

Publication Analysis

Top Keywords

alcohol dehydrogenase
20
class-i alcohol
12
mammalian alcohol
8
rabbit enzyme
8
northern blots
8
alcohol
6
dehydrogenase
6
isozyme
4
isozyme developments
4
developments mammalian
4

Similar Publications

Background: Fungal pretreatment for partial separation of lignocellulosic components may reduce lignocellulose recalcitrance during the production of biofuels and biochemicals. Quantitative and qualitative modification of plant lignin through genetic engineering or traditional breeding may also reduce the recalcitrance. This study was conducted to examine the effects of combining these two approaches using three white rot fungi and mulberry wood with an altered lignin structure.

View Article and Find Full Text PDF

Nicotinamide adenine dinucleotide is a crucial coenzyme in cellular metabolism and is implicated in various diseases. This work introduces an electrochemical bioanalytical method utilizing solution-phase formate dehydrogenase (CbFDH) for detecting its oxidized form (NAD) in human blood plasma samples. The detection mechanism involves the catalytic conversion of NAD to NADH, facilitated by CbFDH in the presence of formate.

View Article and Find Full Text PDF

Mycofactocin is a redox cofactor essential for the alcohol metabolism of mycobacteria. While the biosynthesis of mycofactocin is well established, the gene , which encodes an oxidoreductase of the glucose-methanol-choline superfamily, remained functionally uncharacterized. Here, we show that MftG enzymes are almost exclusively found in genomes containing mycofactocin biosynthetic genes and are present in 75% of organisms harboring these genes.

View Article and Find Full Text PDF

With the rapid advancement of proteomics, numerous scholars have investigated the intricate relationships between plasma proteins and various diseases. Therefore, this study aims to elucidate the relationship between BDH1 and type 2 diabetes using Mendelian randomization (MR) and to identify novel targets for the prevention and treatment of type 2 diabetes through proteomics. This study primarily employed the Mendelian Randomization (MR) method, leveraging genetic data from numerous large-scale, publicly accessible genome-wide association studies (GWAS).

View Article and Find Full Text PDF

Polycyclic aromatic compounds (PACs) are pervasive environmental contaminants derived from diverse sources including pyrogenic (e.g., combustion processes), petrogenic (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!