Characterization of the angiotensin II-receptor subtype in the longitudinal smooth muscle of the rat portal vein.

Naunyn Schmiedebergs Arch Pharmacol

Department of Pharmacotherapy, Academic Medical Centre, University of Amsterdam, The Netherlands.

Published: February 1993

The purpose of the present study was to identify the angiotensin II-receptor subtype involved in the enhancement of the amplitude of the phasic contractions by angiotensin II in the isolated rat portal vein preparation. At an extracellular Ca2+ concentration of 0.9 mmol/l and a K+ concentration of 4 mmol/l, angiotensin II induced concentration-dependent increases in the amplitude of the phasic contractions. The enhancement of phasic contraction amplitude caused by angiotensin II was not significantly altered by pretreatment of the rat portal vein with indomethacin 10(-5) mol/l or nitro-L-arginine 10(-4) mol/l, indicating that neither prostaglandins nor the endothelium derived-relaxing factor (NO) are involved. Losartan (DuP 753), a nonpeptide selective AT1-receptor antagonist, concentration-dependently shifted the concentration-response curve for the effect of angiotensin II on the amplitude of the contractions to the right, without reducing the maximal response (pA2 = 8.6, slope = 0.98), thus suggesting competitive antagonism at the level of AT1-receptors. By contrast, PD 123,177, a nonpeptide selective AT2-receptor antagonist, even at 10(-5) mol/l, caused no significant change of the phasic myogenic response to angiotensin II, indicating the absence of AT2-receptor involvement. Dithiothreitol, a disulfide-reducing agent which is known to inactivate AT1-receptors in various tissues, markedly inhibited (3 mmol/l) or even abolished (5 mmol/l) the contractile response of the rat portal vein to angiotensin II, supporting the conclusion that these receptors can be classified as AT1-receptors.(ABSTRACT TRUNCATED AT 250 WORDS)

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00169271DOI Listing

Publication Analysis

Top Keywords

rat portal
16
portal vein
16
angiotensin ii-receptor
8
ii-receptor subtype
8
amplitude phasic
8
phasic contractions
8
concentration mmol/l
8
10-5 mol/l
8
nonpeptide selective
8
angiotensin
7

Similar Publications

Cilostazol has previously been shown to reduce liver steatosis and enhance hepatic perfusion. We investigated the effects of cilostazol after major hepatectomy in a steatotic rat model. Six weeks prior to surgery, Sprague-Dawley rats were fed with a high-fructose diet.

View Article and Find Full Text PDF

Spinal cord injury (SCI) causes abnormal liver function, the development of metabolic dysfunction-associated steatotic liver disease features and metabolic impairment in patients. Experimental models also demonstrate acute and chronic changes in the liver that may, in turn, affect SCI recovery. These changes have collectively been proposed to contribute to the development of a SCI-induced metabolic dysfunction-associated steatohepatitis (MASH).

View Article and Find Full Text PDF

Effects of pesticide dichlorvos on liver injury in rats and related toxicity mechanisms.

Ecotoxicol Environ Saf

January 2025

West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610041, China. Electronic address:

Dichlorvos (DDVP) is an organophosphorus pesticide commonly utilized in agricultural production. Recent epidemiological studies suggest that exposure to DDVP correlates with an increased incidence of liver disease. However, data regarding the hepatotoxicity of DDVP remain limited.

View Article and Find Full Text PDF

Liver regeneration is intricate, involves many cells, and necessitates extended research. This study aimed to investigate the response of liver oval cells (bipotent liver progenitors) to the epigenetic modifier trichostatin A (TSA), an HDAC1 inhibitor, and to develop a scoring system for assessing the response of these cells. Three groups of equally divided rats (n=24) were selected: control (A, dimethyl sulfoxide treated); oval cell induction (B, acetylaminofluorene [2-AAF] to block hepatocyes/carbon tetrachloride [CCL4] to induce oval cell response); and epigenetic modulation (C, TSA post 2-AAF/CCL4 injury).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!