The hematopoietic-specific DNA-binding protein B1 binds to the DNA consensus sequence AAAGRGGAARYG located twice in intervening sequence 2 of both of the mouse beta-globin genes (D. L. Galson and D.E. Housman, Mol. Cell. Biol. 8:381-392, 1988). B1 was cloned by expression of a murine erythroleukemia (MEL) cell cDNA library in transfected COS cells and screening by electrophoretic mobility shift analysis. B1 is identical to the proto-oncogene Spi-1/PU.1 (Spi-1), an ets family member. Protein-DNA contacts are shown to resemble those of the helix-turn-helix homeodomain proteins. By Northern (RNA) analysis, we found that Spi-1 mRNA is present at low levels during murine CFU-E maturation and is at least 20-fold higher in uninduced MEL, a transformed proerythroblast-like cell line which contains an activating/transforming insertion of spleen focus-forming virus at the Spi-1 locus. Dimethyl sulfoxide-induced MEL cell differentiation decreases Spi-1 mRNA to approximately 20% of the uninduced level before commitment occurs. In addition to erythroid cells, Spi-1 mRNA is present in B cells, myelomonocytes, and mast cells but not in T cells and nonhematopoietic cell types. In situ hybridization demonstrated Spi-1 mRNA expression in bone marrow, spleen, interstitial nonhepatocytes of the liver, and interstitial nontubular cells of the testis. The Spi-1 locus was mapped on human chromosome 11 to the same interval as ACP2 (lysosomal acid phosphatase), between the anonymous DNA markers D11S33 and D11S14. This region has not yet been found to be associated with a human malignancy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC359686 | PMC |
http://dx.doi.org/10.1128/mcb.13.5.2929-2941.1993 | DOI Listing |
Mol Immunol
November 2024
Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada; Division of Genetics and Development, Children's Health Research Institute, London, Ontario, Canada. Electronic address:
Activation-induced cytidine deaminase (AID, encoded by Aicda) plays a key role in somatic hypermutation and class switch recombination in germinal center B cells. However, off-target effects of AID are implicated in human leukemia and lymphoma. A mouse model of precursor B cell acute lymphoblastic leukemia driven by deletion of the related transcription factors PU.
View Article and Find Full Text PDFPeerJ
September 2024
Faculty of Medical Technology, Prince of Songkla University, Hat Yai, Songkhla, Thailand.
Shock
December 2024
Burn and Shock Trauma Research Institute, Loyola University Chicago, Maywood, Illinois.
Introduction: Hematopoiesis proceeds in a tiered pattern of differentiation, beginning with hematopoietic stem cells (HSC) and culminating in erythroid, myeloid, and lymphoid lineages. Pathologically altered lineage commitment can result in inadequate leukocyte production or dysfunctional cell lines. Drivers of emergency hematopoiesis after burn injury are inadequately defined.
View Article and Find Full Text PDFEMBO J
May 2024
Department of Biochemistry, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai, 980-8575, Japan.
Transcription factors BACH2 and IRF4 are both essential for antibody class-switch recombination (CSR) in activated B lymphocytes, while they oppositely regulate the differentiation of plasma cells (PCs). Here, we investigated how BACH2 and IRF4 interact during CSR and plasma-cell differentiation. We found that BACH2 organizes heterochromatin formation of target gene loci in mouse splenic B cells, including targets of IRF4 activation such as Aicda, an inducer of CSR, and Prdm1, a master plasma-cell regulator.
View Article and Find Full Text PDFJ Biol Chem
May 2024
Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, UK; UK Dementia Research Institute at Cardiff, Cardiff University, Cardiff, UK. Electronic address:
Recent interest in the biology and function of peritoneal tissue resident macrophages (pMΦ) has led to a better understanding of their cellular origin, programming, and renewal. The programming of pMΦ is dependent on microenvironmental cues and tissue-specific transcription factors, including GATA6. However, the contribution of microRNAs remains poorly defined.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!