The stable complexes between highly fluorescent, polyfunctional intercalators and dsDNA can be used to detect dsDNA in agarose gels at picogram levels and for multicolor detection of multiplexed dsDNA fragments. Development of additional DNA-binding fluorophores with appropriate spectroscopic properties will expand the range of applications. In principle, the DNA-dye intercalation complexes represent a more sensitive alternative to an established approach to fluorescent labeling and detection of restriction fragments by ligation to single-stranded short oligonucleotides labeled with different fluorochromes, followed by separation on denaturing polyacrylamide gels. The latter technique gives near single-base resolution up to 400 bases and the ability to quantitate fragment size up to 2000 bases, and has been successfully applied to cosmid mapping. Detection of DNA fragments as intercalation complexes requires that the separations be performed on agarose gels under nondenaturing conditions. Such conditions have been used for extensive mapping of yeast cosmids with postelectrophoresis staining with ethidium bromide. For the patterns on agarose gels, the magnitude of the "error window," which specifies how similar two fragments must be before the corresponding fragments in different digests are paired, was reported to be strongly size dependent. The error window was expanded by a factor of 1.3 for fragments from 400 to 600 bp, 1.2 for fragments from 600 to 800 bp, and 1.1 for fragments from 800 to 1000 bp. Moreover, it was necessary to introduce corrections for systematic differences between size estimates taken from two different gels. For the multiplexing procedure described here, the size estimates for fragments from 600 bp to over 23 kbp were in close agreement with actual sizes as determined from DNA sequence (Table I), and certainly within the error windows given above. The multiplexing procedure should also minimize errors introduced by gel-to-gel variations in mobility, because the standard and unknowns are always run in the same lanes. Kohara et al. established a physical map of almost the entire Escherichia coli chromosome by analysis of a large genomic library. In this case, partial restriction digests were used to generate patterns of fragments and the mapping was performed by agarose gel electrophoresis. The disadvantage of this approach is that fewer fragments are generated. However, this is compensated for by the fact that partial digests reveal the order of the fragments produced and thus greatly increase the amount of information relevant to the question of overlap between different DNA fragments.(ABSTRACT TRUNCATED AT 400 WORDS)
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0076-6879(93)17080-o | DOI Listing |
ChemSusChem
January 2025
Gebze Technical University, Department of Chemical Engineering, Gebze, 41400, Kocaeli, TURKEY.
This contribution uses a rapid microwave-assisted hydrothermal synthesis method to produce a vanadium-based K1.92Mn0.54V2O5·H2O cathode material (quoted as KMnVOH).
View Article and Find Full Text PDFJ Eukaryot Microbiol
January 2025
Laboratory of Cytology of Unicellular Organisms, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia.
The genus Pelomyxa includes 15 species of anaerobic Archamoebae with remarkable diverse nucleoplasm morphology. Nuclear structures, like chromatin and nucleoli, of several members of the genus was previously identified only based on their ultrastructural similarity to typical structures of somatic cells of higher eukaryotes. Here, we explored an easy-to-use, one-step intravital staining method with DAPI and pyronin to distinguish between DNA and RNA structures in nuclei of unfixed cells of Pelomyxa belevskii and P.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China. Electronic address:
Phthalate esters, particularly di(2-ethylhexyl) phthalate (DEHP), are widely used plasticizers found in various consumer products, posing significant environmental and health risks due to their endocrine-disrupting effects. In this study, a novel enzyme-free intra-capacitive biofuel cell self-powered sensor (ICBFC-SPS) was developed. The ICBFC-SPS integrated a ternary heterostructure-based capacitive anode and a cathode with a sensing interface into a single-chamber electrolytic cell.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Instituto de Química, Universidade Federal de Alfenas (UNIFAL-MG), Alfenas 37130-000, MG, Brazil.
Background: Melanoma is the most aggressive and lethal skin cancer that affects thousands of people worldwide. Ruthenium complexes have shown promising results as cancer chemotherapeutics, offering several advantages over platinum drugs, such as potent efficacy, low toxicity, and less drug resistance. Additionally, anthraquinone derivatives have broad therapeutic applications, including melanoma.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Faculty of Metallurgical and Energy Engineering, Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093 China. Electronic address:
High-value recycling of photovoltaic waste graphite (WG) is an effective path to achieve "carbon neutrality". However, the current most adopted methods are landfilling, incineration and leaching, which can lead to undesirable environmental contamination and waste of resources. Here, an energy-efficient and high-value flash recycling strategy is developed in which photovoltaic WG is converted to high-capacity and high-rate graphite anode for lithium-ion batteries (LIBs) in milliseconds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!