Small unilamellar vesicles (SUV) were prepared from the total lipid extract of Mycoplasma capricolum. The SUV were labeled with the fluorescent probe octadecylrhodamine B chloride (R18) to a level at which the R18 fluorescence was self-quenched. At pH 7.4 and 37 degrees C, and in the presence of 5% polyethylene glycol, an increase in the R18 fluorescence with time was observed when the R18-labeled SUV were introduced to a native M. capricolum cell suspension. The fluorescence dequenching resulting from dilution of the R18 into the unlabeled membranes of M. capricolum, was interpreted as a result of lipid mixing during fusion between the SUV and the mycoplasma cells. The presence of cholesterol in the SUV was found to be obligatory to allow SUV-mycoplasma fusion to occur. Adaptation of M. capricolum cells to grow in a medium containing low cholesterol concentration provided cells in which the unesterified cholesterol content was as low as 17 micrograms/mg cell protein. The fusion activity of the adapted cells was very low or nonexistent. Nonetheless, when an early exponential phase culture of the adapted cells was transferred to a cholesterol-rich medium, the cells accumulated cholesterol and regained their fusogenic activity. The cholesterol requirement for fusion in the target mycoplasma membrane was met by a variety of planar sterols having a free beta-hydroxyl group, but differing in the aliphatic side chain, e.g., beta-sitosterol or ergosterol, even though these sterols, having a bulky side chain, are preferentially localized in the outer leaflet of the lipid bilayer. It is suggested that the role of cholesterol in mycoplasma-SUV fusion is not at the level of bulk bilayer viscosity but rather, affecting local lipid-lipid or lipid-protein interactions that are relevant to the fusion event.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1262383 | PMC |
http://dx.doi.org/10.1016/S0006-3495(93)81430-9 | DOI Listing |
Gels
January 2025
Institute of Synthetic Bioarchitectures, Department of Bionanosciences, University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, Level 2, 1190 Vienna, Austria.
Giant unilamellar vesicles (GUVs) are versatile cell models in biomedical and environmental research. Of the various GUV production methods, hydrogel-assisted GUV production is most easily implemented in a typical biological laboratory. To date, agarose, polyvinyl alcohol, cross-linked dextran-PEG, polyacrylamide, and starch hydrogels have been used to produce GUVs.
View Article and Find Full Text PDFBiomimetics (Basel)
January 2025
Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska Dolina F1, 84248 Bratislava, Slovakia.
The properties of the large unilamellar vesicles (LUVs) from 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC), modified by lipopolysaccharides (LPS) from sv. Enteritidis, which mimics Gram-negative bacteria, were studied by various physical methods. LPS, in the range of 0/20/50 % / relative to the lipid, had a regulatory role in the structure of the LUVs toward the lower size, low polydispersity, and over-a-month size stability due to the lower negative zeta potential.
View Article and Find Full Text PDFFront Mol Biosci
January 2025
Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, United States.
This study investigates the dynamics of oleate hydratase (OhyA), a bacterial flavoenzyme from , and its interactions with lipid membranes, focusing on the factors influencing membrane binding and oligomerization. OhyA catalyzes the hydration of unsaturated fatty acids, playing a key role in bacterial pathogenesis by neutralizing host antimicrobial fatty acids. OhyA binds the membrane bilayer to access membrane-embedded substrates for catalysis, and structural studies have revealed that OhyA forms oligomers on membrane surfaces, stabilized by both protein-protein and protein-lipid interactions.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick, Canada.
Giant unilamellar vesicles (GUVs) are ideal for studying cellular mechanisms due to their cell-mimicking morphology and size. The formation, stability, and immobilization of these vesicles are crucial for drug delivery and bioimaging studies. Separately, metal-organic frameworks (MOFs) are actively researched owing to their unique and varied properties, yet little is known about the interaction between MOFs and phospholipids.
View Article and Find Full Text PDFLangmuir
January 2025
Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Institute of New Concept Sensors and Molecular Materials, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
Solid supported lipid bilayers (SLBs) serve as an excellent platform for biophysical studies. However, the formation of highly negatively charged SLBs on negatively charged surfaces remains a challenge due to electrostatic repulsion. Here, we study the effects of ionic strength and osmotic stress on the formation of highly negatively charged SLBs on the silica surface.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!