We have molecularly cloned and sequenced a rat liver nuclear pore complex (NPC) protein of calculated molecular mass of 155 kD. Consistent with recently proposed nomenclature this protein is termed nucleoporin 155, or nup155. Unlike other nups that have so far been molecularly cloned and sequenced, nup155 does not contain repetitive sequence domains. It does not show similarity to the sequences of other proteins, including any nups, so far compiled in the data bases. Like other vertebrate nups which have been characterized nup155 possesses abundant (46 in total) consensus sites for various kinases. By immunoelectron microscopy, nup155 is associated with both the nucleoplasmic and the cytoplasmic aspect of the NPC and is therefore possibly a component of the symmetrically arranged NPC substructures. In mitotic cells, nup155 assumes a diffuse cytoplasmic distribution. Nup155 is among the integral of 30 proteins that were extracted from rat liver nuclear envelopes by 2.0 M urea/1.0 mM EDTA, separated from WGA-reactive proteins by WGA-Sepharose and further subfractionated by SDS-hydroxylapatite. These proteins are potential candidates for being nups.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2119768PMC
http://dx.doi.org/10.1083/jcb.121.1.1DOI Listing

Publication Analysis

Top Keywords

nuclear pore
8
pore complex
8
repetitive sequence
8
molecularly cloned
8
cloned sequenced
8
rat liver
8
liver nuclear
8
nup155
7
nup155 novel
4
novel nuclear
4

Similar Publications

The human nucleoporin RanBP2/Nup358 interacts with SUMO1-modified RanGAP1 and the SUMO E2 Ubc9 at the nuclear pore complex (NPC) to promote export and disassembly of exportin Crm1/Ran(GTP)/cargo complexes. In mitosis, RanBP2/SUMO1-RanGAP1/Ubc9 remains intact after NPC disassembly and is recruited to kinetochores and mitotic spindles by Crm1 where it contributes to mitotic progression. Interestingly, RanBP2 binds SUMO1-RanGAP1/Ubc9 via motifs that also catalyze SUMO E3 ligase activity.

View Article and Find Full Text PDF

The application of sand-clay mixtures is diverse in contemporary engineering practices, with particular emphasis on their shear strength characteristics. This study focused on the estimation of the shear strength of sand-clay mixtures using the artificial neural network (ANN) and low-field nuclear magnetic resonance (NMR) spectroscopy. In this study, NMR tests and triaxial compression tests were carried out on 160 artificial sand-clay mixtures with different mineralogical compositions, water contents, and dry densities in the laboratory to obtain the T spectra and shear strength indices, respectively.

View Article and Find Full Text PDF

Covalent integration of polymers and porous organic frameworks (POFs), including metal-organic frameworks (MOFs), covalent organic frameworks (COFs) and hydrogen-bonded organic frameworks (HOFs), represent a promising strategy for overcoming the existing limitations of traditional porous materials. This integration allows for the combination of the advantages of polymers, i.e.

View Article and Find Full Text PDF

Sequential Pore Functionalization in MOFs for Enhanced Carbon Dioxide Capture.

JACS Au

December 2024

Materials Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States.

The capture of carbon dioxide (CO) is crucial for reducing greenhouse emissions and achieving net-zero emission goals. Metal-organic frameworks (MOFs) present a promising solution for carbon capture due to their structural adaptability, tunability, porosity, and pore modification. In this research, we explored the use of a copper (Cu(II))-based MOF called .

View Article and Find Full Text PDF

Oogenesis involves a novel nuclear envelop remodeling mechanism in Schmidtea mediterranea.

Dev Biol

December 2024

Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA; Howard Hughes Medical Institute, Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA. Electronic address:

The cell nuclei of Ophisthokonts, the eukaryotic supergroup defined by fungi and metazoans, is remarkable in the constancy of their double-membraned structure in both somatic and germ cells. Such remarkable structural conservation underscores common and ancient evolutionary origins. Yet, the dynamics of disassembly and reassembly displayed by Ophisthokont nuclei vary extensively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!