The structural changes following the binding to protein kinase C (PKC) of activators that promote its translocation to lipid environments were studied by far-u.v. c.d. and intrinsic fluorescence measurements of the protein. In the absence of activators, PKC contained 40% alpha-helix, with an average size of 13 amino acids per alpha-helix segment, and 12% beta-structure as deduced from c.d. spectral analysis while fitting a set of model proteins of known structure. Ligands that promote translocation and activation of the enzyme, such as Ca2+ ions and phorbol esters, produced drastic changes in the c.d. spectra which may be interpreted as a reduction in the average number of consecutive amino acids in the alpha-helix. Most of the total alpha-helix structure was conserved and an increase in beta-structure was produced by active phorbol esters. These activators differentially affected the fluorescence of PKC: phorbol esters shifted the emission maximum to the red, whereas Ca2+ produced a marked decrease in the intensity of the fluorescence emission, suggesting in both cases that tryptophan residues were exposed to increased polar environments after binding of the ligands.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1132356 | PMC |
http://dx.doi.org/10.1042/bj2900827 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!