The hyaluronate synthase complex was identified in plasma membranes from B6 cells. It contained two subunits of molecular masses 52 kDa and 60 kDa which bound the precursor UDP-GlcA in digitonin solution and partitioned into the aqueous phase, together with nascent hyaluronate upon Triton X-114 phase separation. The 52 kDa protein cross-reacted with poly- and monoclonal antibodies raised against the streptococcal hyaluronate synthase and the 60 kDa protein was recognized by monoclonal antibodies raised against a hyaluronate receptor. The 52 kDa protein was purified to homogeneity by affinity chromatography with monoclonal anti-hyaluronate synthase.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1132350PMC
http://dx.doi.org/10.1042/bj2900791DOI Listing

Publication Analysis

Top Keywords

hyaluronate synthase
12
kda protein
12
monoclonal antibodies
8
antibodies raised
8
hyaluronate
5
kda
5
synthase eukaryotic
4
eukaryotic cell
4
cell hyaluronate
4
synthase complex
4

Similar Publications

This correspondence discusses the recent findings by Straalen et al., highlighting molecular similarities and distinctions between palmoplantar pustulosis (PPP) and dyshidrotic palmoplantar eczema (DPE). The study emphasizes shared proinflammatory pathways and T-cell-related gene upregulation while detailing unique features such as neutrophil involvement in PPP and lipid antigen processing in DPE.

View Article and Find Full Text PDF

Although biologics have been revolutionizing the treatment of inflammatory bowel diseases (IBD) over the past decade, a significant number of patients still fail to benefit from these drugs. Overcoming the nonresponse to biologics is one of the top challenges in IBD treatment. In this study, we revealed that hyaluronan (HA), an extracellular matrix (ECM) component in the gut, is associated with nonresponsiveness to infliximab and vedolizumab therapy in patients with IBD.

View Article and Find Full Text PDF

Differential Regulation of Hyaluronan Synthesis by Three Isoforms of Hyaluronan Synthases in Mammalian Cells.

Biomolecules

December 2024

Department of Neurosurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.

Hyaluronan (HA) is one of the crucial components of the extracellular matrix in vertebrates and is synthesized by three hyaluronan synthases (HASs), namely HAS1, HAS2, and HAS3. The low expression level of HASs in normal keratinocytes and other various types of cells presents a recognized challenge, impeding biological and pathological research on their localization. In this study, the human proteins HAS1, HAS2, and HAS3 with fused maltose-binding protein (MBP) tags were successfully expressed at high levels and purified for the first time in HEK293F cells.

View Article and Find Full Text PDF

Hyaluronan Directs Alveolar Type II Cell Response to Acute Ozone Exposure in Mice.

Am J Respir Cell Mol Biol

January 2025

Duke Medicine, Medicine, Durham, North Carolina, United States.

Becoming more frequent due to climate change, ozone (O) exposures can cause lung injury. Alveolar type 2 (AT2) cells and hyaluronan (HA), a matrix component, are critical to repairing lung injury and restoring homeostasis. Here, we define the impact of HA on AT2 cells following acute O exposure.

View Article and Find Full Text PDF

Biomimetic Topological Micropattern Arrays Regulate the Heterogeneity of Cellular Fates in Lung Fibroblasts between Fibrosis and Invasion.

ACS Nano

January 2025

Department of Respiratory and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.

Article Synopsis
  • Idiopathic pulmonary fibrosis (IPF) involves persistent lung tissue injury and abnormal healing, with key roles played by myofibroblasts transitioning from fibroblasts and depositing extracellular matrix (ECM).
  • Research using engineered ECM micropatterns revealed that isotropic fibroblasts exhibited invasive characteristics and high expression of specific markers, while anisotropic fibroblasts adopted a more normal remodeling phenotype.
  • The study highlights how cellular topology affects fibroblast behavior and interactions with the ECM, which could contribute to worsening fibrosis and potentially create an environment that promotes cancer development.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!