The phosphorylation of glucose-regulated protein, GRP78, is thought to be involved in the regulation of the binding function of GRP78 to immunoglobulin heavy chains. The phosphorylation of GRP78 proceeded faster in transformed cells than in normal cells, whereas the levels of GRP78 synthesis and accumulation were similar in both cells. Treatment of the cells with tunicamycin caused a rapid decrease in GRP78 phosphorylation within 2 to 4 h in both cell types prior to GRP78 induction. Following a longer period of tunicamycin treatment, GRP78 phosphorylation recovered gradually in parallel with the accumulation of newly synthesized GRP78. The half-life of GRP78 was over 24 h and similar in both normal and transformed cells either with or without tunicamycin treatment. In contrast, the half-life of phosphate groups incorporated into GRP78 was about 120 min in both types of cells in the absence of tunicamycin treatment. When the cells were treated with tunicamycin, the half-life of the phosphate groups was shortened (-30 min) only in transformed cells, while it remained at untreated control levels in normal cells. These results suggest that GRP78 phosphorylation is important in functional regulation, and that the cells may carry out particular requirements such as increasing or decreasing secretory proteins by modulating GRP78 phosphorylation rather than GRP78 synthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1006/excr.1993.1060DOI Listing

Publication Analysis

Top Keywords

grp78 phosphorylation
16
grp78
14
transformed cells
12
tunicamycin treatment
12
cells
10
phosphorylation glucose-regulated
8
glucose-regulated protein
8
protein grp78
8
phosphorylation grp78
8
normal cells
8

Similar Publications

Oxidative stress, endoplasmic reticulum (ER) stress, and alterations in autophagy activity have been described as prominent factors mediating many pathological processes in chronic kidney disease (CKD). The accumulation of misfolded proteins in the ER may stimulate the unfolded protein response (UPR). The interplay between autophagy and UPR in hemodialysis (HD) patients remains unclear.

View Article and Find Full Text PDF

Objective: Epothilone D (EpoD), microtubule (MT) stabilizing agent, demonstrated promising results in the animal models of Alzheimer's disease, Parkinson's disease and schizophrenia. The present study sought to investigate preventive effects of EpoD on altered changes of MT related proteins and endoplasmic reticulum (ER) stress proteins induced by social defeat stress (SDS).

Methods: We measured protein expression levels of α-tubulin and its post-translational modifications, MT-associated protein 2, stathmin1 and 2 with their phosphorylated forms, and ER stress markers, 78-kDa glucose-regulated protein (GRP-78) and CCAAT/enhancer binding protein (C/EBP)-homologous protein (CHOP) in the prefrontal cortex (PFC) and hippocampus (HIP) of C57BL/6J strain mice treated with EpoD (2 mg/kg) or its vehicle, dimethylsulfoxide (DMSO), and exposed to SDS.

View Article and Find Full Text PDF

Polycystic ovarian syndrome (PCOS) is a multifaceted metabolic and hormonal disorder in females of reproductive age, frequently associated with cardiac disturbances. This research aimed to explore the protective potential of adropin and/or tirzepatide (Tirze) on cardiometabolic aberrations in the letrozole-induced PCOS model. Female Wistar non-pregnant rats were allotted into five groups: CON; PCOS; PCOS + adropin; PCOS + Tirze; and PCOS + adropin+ Tirze.

View Article and Find Full Text PDF

4-(2-Aminoethyl)-benzenesulfonyl fluoride (AEBSF) is a serine protease inhibitor that may alleviate endoplasmic reticulum (ER) stress, a significant contributing factor to cerebral ischemia/reperfusion injury. The molecular crosstalk between ER stress, oxidative stress and autophagy represents a vicious cycle that can be pharmacologically targeted to minimize neuronal death after acute injuries to the central nervous system. However, the neuroprotective effects of AEBSF in the context of cerebral ischemia/reperfusion injury remain unknown.

View Article and Find Full Text PDF

Hypoxia Induced Lnc191 Upregulation Dictates the Progression of Esophageal Squamous Cell Carcinoma by Activating GRP78/ERK Pathway.

Adv Sci (Weinh)

December 2024

State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.

Hypoxia is a typical hallmark of solid tumors and plays a crucial role in the progression of esophageal squamous cell carcinogenesis (ESCC). Nevertheless, the precise mechanisms underlying the involvement of hypoxia in tumor development remain unclear. In the present study, a novel hypoxia-induced long noncoding RNA (lncRNA) is identified first, lnc191, which is highly expressed in clinical ESCC tissues and is positively correlated with poor prognosis of ESCC patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!