Induction and repair of DNA double-strand breaks (DSBs) was measured using a pulsed-field gel electrophoresis system. A cell line of methotrexate-resistant EMT-6 cells that contain numerous double-minutes (DMs) 3 million base pairs in size was employed. The electrophoretic mobility of these DMs depends on whether they have zero, one, or more than one DSB. With no DSBs the DMs remain as circles and are trapped in the origin of electrophoresis, but with one DSB the DMs migrate as a discrete band and can be detected easily through hybridization with a gene-specific probe. Using a clamped homogeneous electrical field apparatus, the induction of DSBs in the 1.5 to 12 Gy X-ray dose range is studied and is shown to be linear. Double-strand break repair following 7.5 Gy is studied, and is shown to be exponential. The kinetics of both induction and repair of DSBs induced in DM DNA was compared to the induction and repair of DSBs in chromosomal DNA and is shown to be similar. The kinetics of repair of DSBs following 7.5 Gy for cells embedded in agarose and cells in suspension is shown to be similar.

Download full-text PDF

Source

Publication Analysis

Top Keywords

induction repair
16
repair dsbs
12
repair dna
8
dna double-strand
8
double-strand breaks
8
dsbs
6
induction
5
repair
5
dna
4
breaks induction
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!