The influence of Cytochalasin B (CB) on TA3 ascites tumor cells was studied in vivo in order to assess whether CB-induced cell paralysis would affect the transplanation behavior of the cells and in particular tumor distribution after IV cell infusion ("experimental metastases"). Tumor cell pre-treatment with CB (1 mug/ml) did not alter the SC or IV transplantability of TA3 cells. Pre-treatment with 10 mug/ml CB, in contrast, consistently increased the incidence and number of extra-pulmonary tumor takes from IV transfused cells. The amount of pulmonary tumors was not significantly altered. SC transplantability was not affected by 10 mug/ml CB. The importance of cell mobility and cell surface topography for tumor cell nidation in vessels is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ijc.2910190419DOI Listing

Publication Analysis

Top Keywords

tumor cell
12
influence cytochalasin
8
pre-treatment mug/ml
8
tumor
7
cell
6
cell locomotion--a
4
locomotion--a factor
4
factor metastasis
4
metastasis formation?
4
formation? influence
4

Similar Publications

Aim: This study was conducted to evaluate the in vitro effects of hydroxychloroquine (HCQ) on histone deacetylase (HDAC) enzyme activity and interleukin (IL)-6, IL-10, and tumor necrosis factor-alpha (TNF-α) expression. HDAC enzyme activity and the expression of inflammation markers were tested, with the presence of the HDAC inhibitor valproic acid, in human primary cell cultures prepared from two different tissues.

Material And Methods: Primary cell cultures were prepared.

View Article and Find Full Text PDF

Aim: This study aims to assess the clinicopathological and prognostic significance of Tim-3, an immune checkpoint molecule, and Rel-B, an NF-κB subunit, in grade 4 diffuse glioma samples and their relationship with each other.

Material And Methods: The demographic, radiologic, prognostic, and treatment data of patients diagnosed with grade 4 diffuse glioma between 2016 and 2019 were reviewed and recorded. Tim-3 and Rel-B were applied to the paraffin-embedded tissues by immunohistochemistry method.

View Article and Find Full Text PDF

A Homozygous Variant in HSD17B1 Identified in Women With Poor Ovarian Response.

Clin Genet

January 2025

NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, ChangSha, China.

An increasing number of patients utilizing in vitro fertilization (IVF) and assisted reproductive technology (ART) are characterized as impaired or poor ovarian responders (PORs). Owing to its unclear molecular etiology, the management of patients with age-related ovarian characteristics remains a controversial and complex clinical concern. Therefore, it is important to identify and understand the etiological causes behind POR to develop more effective and efficient management strategies for these patients.

View Article and Find Full Text PDF

Leaky and structurally abnormal blood vessels and increased pressure in the tumor interstitium reduce the infiltration of CAR-T cells in solid tumors, including triple-negative breast cancer (TNBC). Furthermore, high burden of tumor cells may cause reduction of infiltrating CAR-T cells and their functional exhaustion. In this study, various effector-to-target (E:T) ratio experiments are established to model the treatment using CAR-T cells in leukemia (high E:T ratio) and solid tumor (low E:T ratio).

View Article and Find Full Text PDF

In triple-negative breast cancer (TNBC), pro-tumoral macrophages promote metastasis and suppress the immune response. To target these cells, a previously identified CD206 (mannose receptor)-binding peptide, mUNO was engineered to enhance its affinity and proteolytic stability. The new rationally designed peptide, MACTIDE, includes a trypsin inhibitor loop, from the Sunflower Trypsin Inhibitor-I.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!