Saturation mutagenesis is one approach for determining the contributions of individual base pairs to the structure and function of defined DNA sequence elements. In this paper, we describe a novel method for saturation mutagenesis involving PCR amplification with degenerate synthetic oligonucleotides as primers. The degeneracy is confined to a specific target within the primer by mixing a low percentage of the three non-wild type (non-WT) nucleotide precursors with WT at specific positions during primer synthesis. PCR amplification of WT template DNA with the degenerate primer and an opposing WT primer, followed by subsequent cloning using restriction sites designed into the primers, results in recovery of a population of randomly mutated products. Since primers with multiple mutations hybridize less efficiently to WT template DNA during PCR amplification, the recovery of mutants with multiple base changes is greatly reduced. The efficient generation of random point mutations with this method allows the construction of separate mutant populations, each mutagenized over a different portion of the DNA sequence element. If a phenotypic assay is available, these populations can be screened directly to define those regions within the element that are important for activity. Only those populations containing mutations in the important regions require further characterization by DNA sequence analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1101/gr.2.3.210DOI Listing

Publication Analysis

Top Keywords

pcr amplification
16
dna sequence
16
sequence element
8
saturation mutagenesis
8
template dna
8
dna
6
mutagenic oligonucleotide-directed
4
pcr
4
oligonucleotide-directed pcr
4
amplification
4

Similar Publications

Human seasonal coronaviruses (hCoVs) are a group of viruses that affect the upper respiratory tract. While seasonal patterns and the annual variability of predominant hCoV species are well-documented, their genetic and species diversity in St. Petersburg and across Russia remains largely unexplored.

View Article and Find Full Text PDF

Background/objectives: Diet composition is important for health, especially during critical periods such as pre-gestation (P), gestation (G), or lactation (S), due to its potential impact not only on the mother but on the offspring. The Mediterranean diet includes many healthy foods rich in fiber and/or polyphenols, such as whole grains, fruits, vegetables, beans, and nuts. The present preclinical study assesses the impact of a diet rich in fiber and polyphenols (HFP diet) during one of those three periods (P, G, or S, three weeks each) on the rat gene expression of the small intestine obtained at the end of the lactation period.

View Article and Find Full Text PDF

Information on circulating HBV (sub-)genotype, variants, and hepatitis D virus (HDV) coinfection, which vary by geographical area, is crucial for the efficient control and management of HBV. We investigated the genomic characteristics of HBV (with a prevalence of 8.1%) and the prevalence of HDV in Nigeria.

View Article and Find Full Text PDF

DNA methylation has been widely studied with the goal of correlating the genome profiles of various diseases with epigenetic mechanisms. Multiple approaches have been developed that employ extensive steps, such as bisulfite treatments, polymerase chain reactions (PCR), restriction digestion, sequencing, mass analysis, etc., to identify DNA methylation.

View Article and Find Full Text PDF

In the year 2019, a highly virulent coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged, precipitating the outbreak of the illness known as coronavirus disease 2019 (COVID-19). The commonly employed reverse transcription polymerase chain reaction (RT-qPCR) methodology serves to estimate the viral load in each patient's sample by employing a standard curve. However, it is imperative to recognize that this technique exhibits limitations with respect to clinical diagnosis and therapeutic applications, since an advancement of the conventional polymerase chain reaction methods, digital polymerase chain reaction (digital PCR or DDPCR), enables the direct quantification and clonal amplification of nucleic acid strands.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!