Cholesterol uptake was studied at the small intestine biopsies taken from patients without intestinal malfunction. Three distinct groups of patients were described: those with low (146 +/- 19) nmol/mm2 per 2 h), medium (455 +/- 18 nmol/mm2 per 2 h) and high (833 +/- 24 nmol/mm2 per 2 h) rates of cholesterol uptake. Positive correlation between cholesterol uptake and intestinal cholesterol synthesis was observed in the last two groups.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0005-2760(93)90113-nDOI Listing

Publication Analysis

Top Keywords

cholesterol uptake
16
+/- nmol/mm2
12
cholesterol
5
uptake human
4
human intestine
4
intestine hypo-
4
hypo- hyperresponsiveness
4
hyperresponsiveness cholesterol
4
uptake studied
4
studied small
4

Similar Publications

Abnormal cholesterol metabolism has become a popular therapeutic target in cancer therapy. In recent years there has been a surge in interest in the anti-tumor activities of saponins, particularly their ability to disrupt cholesterol homeostasis in tumor cells. Cholesterol regulation by saponins is a complex process that involves multiple mechanisms.

View Article and Find Full Text PDF

Introduction: Type 2 diabetes (T2D) is a chronic condition characterized by high levels of blood glucose resulting from the inefficiency of insulin. This study aims to explore the mechanism of TGFB-induced factor homeobox 1 (TGIF1) in the glycolipid metabolism of mice with T2D.

Research Design And Methods: Mice with T2D were induced by high-fat diet and low-dose streptozotocin (STZ) injection.

View Article and Find Full Text PDF

In the realm of gene therapy, given the exceptional performance of native exosomes, researchers have redirected their innovative focus towards exosome-mimetic nanovesicles (EMNs); however, the current design of most EMNs relies heavily on native cells or their components, inevitably introducing inter-batch variability issues and posing significant challenges for quality control. To overcome the excessive reliance on native cellular components, this study adopts a unique approach by precisely mimicking the lipid composition of exosomes and innovatively incorporating histone components to recapitulate the gene transfer characteristics of exosomes. We selected sphingomyelin (SM), phosphatidylcholine (PC), phosphatidylserine (PS), phosphatidylethanolamine (PE), and cholesterol as the lipid components, and employed the double emulsion method to prepare biomimetic exosomes carrying histone A and PEDF-DNA plasmids (His-pDNA@EMNs).

View Article and Find Full Text PDF

Aims: The purpose of this study was to investigate the prognostic significance of cholesterol uptake genes in predicting the survival of breast cancer patients.

Background: Cholesterol plays a crucial role in the homeostasis of tumor cells. It is known that cholesterol levels can influence important parameters of the disease, such as sensitivity to therapy, progression, and metastasis of cancer.

View Article and Find Full Text PDF

Existing chemotherapeutic approaches against refractory cancers are ineffective due to off-target effects, inefficient delivery, and inadequate accumulation of anticancer drugs at the tumor site, which causes limited efficiency of drug treatment and toxicity to neighboring healthy cells. The development of nano-based drug delivery systems (DDSs) with the goal of delivering desired therapeutic doses to the diseased cells and has already proven to be a promising strategy to address these challenges. Our study focuses on achieving an efficient tumor-targeted delivery of a combination of drugs for therapeutic benefits by developing a versatile DDS by following a simple one-step chemical approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!