The relationship between 3H-2-fluoro-2-deoxy-D-glucose (FDG) uptake and the proliferative rate of a human ovarian adenocarcinoma cell line (HTB77IP3) was examined in vitro. HTB77IP3 cells were plated and allowed to grow through lag, exponential and plateau phases. Proliferative rate assessed by DNA flow cytometry and 3H-thymidine incorporation was highest in the lag phase and fell significantly as the cells progressed from the exponential through plateau phases. By DNA flow cytometry, the proliferation index (% of S+G2/M phase cells) fell from 65% to 23%. Thymidine uptake per cell also declined, by 82%, from lag to plateau phase. By contrast, 3H-FDG uptake per cell was largely unchanged as the cells progressed through the cell growth cycle. Total 3H-FDG uptake was strongly correlated with the number of viable cancer cells present (r = 0.957). Total thymidine uptake, however, substantially underestimated the number of viable cancer cells present. These in vitro differences in tracer uptake suggest that in this adenocarcinoma cell line, FDG measures a substantially different parameter (viable cell number) than thymidine (proliferative rate) and that these differences may result in disparate findings on PET imaging of cancers using these two tracers. Our data for this in vitro system indicate that FDG uptake does not relate to the proliferative activity of cancer cells. However, FDG uptake is strongly related to the number of viable tumor cells.
Download full-text PDF |
Source |
---|
A 79-year-old man was found to have multiple nodules in the lung fields on chest computed tomography. Metastatic lung cancer was suspected; however, the primary site remained elusive. After 1 year of follow-up, both the nodules had enlarged.
View Article and Find Full Text PDFCancer Biother Radiopharm
January 2025
Department of Nuclear Medicine, Hamidiye Faculty of Medicine, Prof. Dr. Cemil Taşcıoğlu City Hospital, University of Health Sciences, İstanbul, Türkiye.
This retrospective multicenter study investigated the biodistribution of Fluorodeoxyglucose (F-FDG) in the positron emission tomography (PET)/computed tomography (CT) in digital PET/CT (dPET) compared to analog PET/CT (aPET), focusing differences in physiological uptake in reference and small structures across various scanner models. One hundred thirty patients with similar preimaging conditions underwent both dPET and aPET imaging within 6 months. Visual evaluations and paired comparative analyses of semiquantitative parameters were performed for small and reference structures.
View Article and Find Full Text PDFZhonghua Yi Xue Za Zhi
January 2025
Department of Nuclear Medicine, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing100730, China.
To establish and validate a nomogram based on clinical characteristics and metabolic parameters derived from F-fluorodeoxyglucose positron emission tomography and computed tomography (F-FDG PET/CT) for prediction of high-grade patterns (HGP) in invasive lung adenocarcinoma. The clinical and PET/CT image data of 311 patients who were confirmed invasive lung adenocarcinoma and underwent pre-treatment F-FDG PET/CT scan in Beijing Hospital between October 2017 and March 2022 were retrospectively collected. The enrolled patients were divided into HGP group (196 patients) and non-HGP group (115 patients) according to the presence and absence of HGP.
View Article and Find Full Text PDFParkinsonism Relat Disord
January 2025
Department of Nuclear Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea. Electronic address:
Introduction: In isolated REM sleep behavior disorder (iRBD), the evidence of cognitive impairment and co-existing amyloid pathology suggests that mild behavioral impairment (MBI) may be associated with disease progression. In this study, we investigated MBI and its association with cognitive function, brain amyloid load and glucose metabolism in iRBD patients to evaluate the utility of MBI as a predictive marker of disease progression.
Methods: Patients with iRBD underwent a neuropsychological evaluation, F-florbetaben (FBB) PET, and F-fluorodeoxyglucose (FDG) PET.
Diagnostics (Basel)
January 2025
Cardiology Department, Coimbra Hospital and University Center, 3004-561 Coimbra, Portugal.
Hypertrophic cardiomyopathy (HCM) is a heterogeneous cardiac disease and one of its major challenges is the limited accuracy in stratifying the risk of sudden cardiac death (SCD). Positron emission tomography (PET), through the evaluation of myocardial blood flow (MBF) and metabolism using fluorodeoxyglucose (FDG) uptake, can reveal microvascular dysfunction, ischemia, and increased metabolic demands in the hypertrophied myocardium. These abnormalities are linked to several factors influencing disease progression, including arrhythmia development, ventricular dilation, and myocardial fibrosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!