Bone healing after bone marrow stromal cell transplantation to the bone defect.

Biomaterials

Surgery Department No. III, Medical Academy, Cracow, Poland.

Published: March 1993

In experimental studies on rabbits, osteogenic properties of stromal cells were confirmed after in vitro growth for 7 and 14 d. The cell suspension was percutaneously transplanted into a surgically produced bone defect in the rabbit's radius. The bone scar produced was X-rayed, and histologically and mineralogically examined after 10, 20 and 40 d follow-ups. Differences in the bone defect healing process (the healing rate and the type of bone tissue produced) were shown between the experimental and the control foreleg. Within the experimental foreleg, healing was considerably accelerated with compact bone formation on a membranous matrix, whilst in the control foreleg, a coarse, fibrous woven bone on a cartilaginous matrix was dominant.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0142-9612(93)90221-mDOI Listing

Publication Analysis

Top Keywords

bone defect
12
bone
9
control foreleg
8
bone healing
4
healing bone
4
bone marrow
4
marrow stromal
4
stromal cell
4
cell transplantation
4
transplantation bone
4

Similar Publications

Introduction: There is a lack of clinical evidence supporting the decision-making process between high tibial osteotomy (HTO) and unicomparmental knee arthroplasty (UKA) in gray zone indication, such as moderate medial osteoarthritis with moderate varus alignment. This study compared the outcomes between HTO and UKA in such cases and assessed the risk factor for not maintaining clinical improvements.

Materials And Methods: We retrospectively reviewed 65 opening-wedge HTOs and 55 UKAs with moderate medial osteoarthritis (Kellgren-Lawrence grade ≥ 3 and Ahlback grade < 3) and moderate varus alignment (5°< Hip-Knee-Ankle angle < 10°) over 3 years follow-up.

View Article and Find Full Text PDF

Extracellular vesicles: essential agents in critical bone defect repair and therapeutic enhancement.

Mol Biol Rep

January 2025

Pediatric Cell, and Gene Therapy Research Center Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran.

Bone serves as a fundamental structural component in the body, playing pivotal roles in support, protection, mineral supply, and hormonal regulation. However, critical-sized bone injuries have become increasingly prevalent, necessitating extensive medical interventions due to limitations in the body's capacity for self-repair. Traditional approaches, such as autografts, allografts, and xenografts, have yielded unsatisfactory results.

View Article and Find Full Text PDF

Multifunctional electrospinning periosteum: Development status and prospect.

J Biomater Appl

January 2025

State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, China.

In the repair of large bone defects, loss of the periosteum can result in diminished osteoinductive activity, nonunion, and incomplete regeneration of the bone structure, ultimately compromising the efficiency of bone regeneration. Therefore, the research and development of tissue-engineered periosteum which can replace the periosteum function has become the focus of current research. The functionalized electrospinning periosteum is expected to mimic the natural periosteum and enhance bone repair processes more effectively.

View Article and Find Full Text PDF

Background: Midfoot pain is common but poorly understood, with radiographs often indicating no anomalies. This study aimed to describe bone, joint and soft tissue changes and to explore associations between MRI-detected abnormalities and clinical symptoms (pain and disability) in a group of adults with midfoot pain, but who were radiographically negative for osteoarthritis.

Methods: Community-based participants with midfoot pain underwent an MRI scan of one foot and scored semi-quantitatively using the Foot OsteoArthritis MRI Score (FOAMRIS).

View Article and Find Full Text PDF

Evaluation of Cartilage-Like Matrix Formation in a Nucleus Pulposus-Derived Cartilage Analog Scaffold.

J Biomed Mater Res B Appl Biomater

January 2025

The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina, USA.

The formation of fibrocartilage in microfracture (MFX) severely limits its long-term outlook. There is consensus in the scientific community that the placement of an appropriate scaffold in the MFX defect site can promote hyaline cartilage formation and improve therapeutic benefit. Accordingly, in this work, a novel natural biomaterial-the cartilage analog (CA)-which met criteria favorable for chondrogenesis, was evaluated in vitro to determine its candidacy as a potential MFX scaffold.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!