Large animal normal tissue tolerance using an epithermal neutron beam and borocaptate sodium.

Strahlenther Onkol

Department of Veterinary Clinical Medicine and Surgery, Washington State University, Pullman.

Published: January 1993

Irradiation of the canine head following intravenous Na2B12H11SH (BSH) administration has provided useful information concerning the tolerance of skin and brain to the resultant complex form of irradiation. The effect of the boron capture reaction in skin and brain has provided estimates of the influence of the microscopic dosimetry involved. Dogs irradiated with the epithermal beam alone provided valuable insight into the relative biological effectiveness (RBE) of the fast neutron component (> 10 keV) of the epithermal beam. When compared with literature values for X-rays for the occurrence of skin necrosis in dogs, an RBE of 4.5 was derived. Previous pharmacokinetic data concerning the distribution of Na2B12H11SH (BSH) to blood and brain has been used to obtain input parameters for computer models of the microvasculature of the brain. Monte Carlo computer models were used to simulate the microscopic distribution of BSH in the normal brain. The term compound factor describes the product of the microscopic boron fission fragment dose hitting the nucleus and the relative biologic effectiveness divided by the macroscopic equilibrium dose of the boron reaction in the tissue of interest. The computed compound factor for Na2B12H11SH (BSH) in normal brain was 0.37. This factor agreed very well with the value of 0.32 obtained for the brain necrosis with the dog irradiations. The compound factor for the dog's skin was experimentally derived from the dog experiments and was equal to 0.5.

Download full-text PDF

Source

Publication Analysis

Top Keywords

na2b12h11sh bsh
12
compound factor
12
skin brain
8
epithermal beam
8
computer models
8
bsh normal
8
normal brain
8
brain
7
large animal
4
animal normal
4

Similar Publications

The relationship between the radiation dose delivered to a tumor and its effect is not completely predictable. Uncertainty in the estimation of the boron concentration in a tumor, variation in the radiation sensitivity of the tumor cells, and the complexity of the interactions between the four types of radiation comprising the boron neutron capture therapy (BNCT) dose contribute to this uncertainty. We reanalyzed the data of our previous papers to investigate the variation in radiosensitivity of tumor cells to the 10B(n,α)7Li dose: the dose generated by the reaction of thermal neutrons and 10B, hereafter the 'boron-neutron dose'.

View Article and Find Full Text PDF

Case numbers for a randomized clinical trial of boron neutron capture therapy for Glioblastoma multiforme.

Appl Radiat Isot

June 2014

Department of Chemistry, University of Bremen, Bremen, Germany; Cooperative Center Medicine, University of Bremen, Bremen, Germany; School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany. Electronic address:

Boron neutron capture therapy (BNCT) with Na2B12H11SH (BSH) or p-dihydroxyborylphenylalanine (BPA), and with a combination of both, was compared to radiotherapy with temozolomide, and the number of patients required to show statistically significant differences between the treatments was calculated. Whereas arms using BPA require excessive number of patients in each arm, a two-armed clinical trial with BSH and radiotherapy plus temozolomide is feasible.

View Article and Find Full Text PDF

Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Clinical interest in BNCT has focused primarily on the treatment of high grade gliomas, recurrent cancers of the head and neck region and either primary or metastatic melanoma. Neutron sources for BNCT currently have been limited to specially modified nuclear reactors, which are or until the recent Japanese natural disaster, were available in Japan, United States, Finland and several other European countries, Argentina and Taiwan.

View Article and Find Full Text PDF

Interaction of Na2B12H11SH with dimyristoyl phosphatidylcholine liposomes.

Chem Phys Lipids

February 2009

Department of Biochemistry, Faculty of Science, Alexandria University, Moharam Bek, 21511 Alexandria, Egypt.

Previous investigations have revealed that the boron cluster compound Na2B12H11SH (BSH) is very potent in causing major structural rearrangements of and leakage from phosphatidylcholine liposomes. This somewhat unexpected finding is interesting from a fundamental point of view and may also constitute the basis of future important pharmaceutical/medical applications of BSH. In order to further explore the BSH-lipid interaction, we have studied the effects caused by BSH on dimyristoyl phosphatidylcholine (DMPC) liposomes.

View Article and Find Full Text PDF

Boron neutron capture therapy for glioblastoma.

Cancer Lett

April 2008

Department of Neurosurgery, Institute of Clinical Medicine, University of Tsukuba, Tenno-dai 1-1-1, Tsukuba City, Ibaraki 305-8575, Japan.

Boron neutron capture therapy (BNCT) theoretically allows the preferential destruction of tumor cells while sparing the normal tissue, even if the cells have microscopically spread to the surrounding normal brain. The tumor cell-selective irradiation used in this method is dependent on the nuclear reaction between the stable isotope of boron ((10)B) and thermal neutrons, which release alpha and (7)Li particles within a limited path length (-9 microm) through the boron neutron capture reaction, (10)B(n,alpha)(7)Li. Recent clinical studies of BNCT have focused on high-grade glioma and cutaneous melanoma; however, cerebral metastasis of melanoma, anaplastic meningioma, head and neck tumor, and lung and liver metastasis have been investigated as potential candidates for BNCT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!