A novel zinc finger gene, designated NT fin12, belonging to the C2H2-Krüppel-type gene family was isolated from a newborn mouse testis cDNA library by using zinc finger consensus motif probes. Northern blot analyses showed that NT fin12 mRNA was expressed during the meiotic prophase of spermatogenesis and in embryogenesis. Transcripts were localized by in situ hybridization in spermatogonia and in early spermatocytes, and in testis cords in the genital ridge as well as in oocytes and follicle cells in the ovary. In midgestational embryos at 8.5-13.5 days postcoitum, transcripts were present in the neuroectoderm, and they were progressively restricted to peripheral ganglia derived from neural crest cells and neural placodes and to the motor nerve cells in the central nervous system. Taken together these results indicate that NT fin12 functions during germ cell development and also plays a role in the specification of a subpopulation of neuroectodermal cells. Genetic linkage analyses revealed that the NT fin12 locus mapped to the deletion region of the tw18 haplotype on mouse chromosome 17.

Download full-text PDF

Source
http://dx.doi.org/10.1006/dbio.1993.1039DOI Listing

Publication Analysis

Top Keywords

zinc finger
12
finger gene
8
deletion region
8
nervous system
8
cells
5
novel murine
4
murine zinc
4
gene mapped
4
mapped tw18
4
tw18 deletion
4

Similar Publications

Specific modulation of 28S_Um2402 rRNA 2'--ribose methylation as a novel epitranscriptomic marker of ZEB1-induced epithelial-mesenchymal transition in different mammary cell contexts.

NAR Cancer

March 2025

Ribosome, Translation and Cancer Team, LaEx DEVweCAN, Institut Convergence Plascan, LYriCAN+, Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France.

The epithelial-mesenchymal transition (EMT) is a dynamic transdifferentiation of epithelial cells into mesenchymal cells. EMT programs exhibit great diversity, based primarily on the distinct impact of molecular activities of the EMT transcription factors. Using a panel of cancer cell lines and a series of 71 triple-negative primary breast tumors, we report that the EMT transcription factor ZEB1 modulates site-specific chemical modifications of ribosomal RNA (rRNA).

View Article and Find Full Text PDF

ZNF169 promotes thyroid cancer progression via upregulating FBXW10.

Cell Div

January 2025

Department of Nuclear Medicine, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South university/Hunan Cancer Hospital, No. 283 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, P.R. China.

Background: Zinc finger protein 169 (ZNF169) plays a key role in cancer development. However, the specific role of ZNF169 in the tumorigenesis of thyroid carcinoma (THCA) remains poorly understood.

Methods: The expression of ZNF169 was measured using immunohistochemistry, RT-qPCR, and western blot.

View Article and Find Full Text PDF

Computational identification and experimental validation of novel microRNAs along with their targets through RT-PCR approach.

Plant Signal Behav

December 2025

Laboratory of Biotechnology and Natural Resources Valorization, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.

Various metabolic and cell signaling processes impact the functions of sugarcane plant cells. MicroRNAs (miRNAs) play critical regulatory roles in enhancing yield and providing protection against various stressors. This study seeks to identify and partially characterize several novel miRNAs in sugarcane using tools, while also offering a preliminary assessment of their functions.

View Article and Find Full Text PDF

A pan-cancer analysis: predictive role of ZNF32 in cancer prognosis and immunotherapy response.

Discov Oncol

January 2025

Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.

The zinc finger protein 32 (ZNF32) has been associated with high expression in various cancers, underscoring its significant function in both cancer biology and immune response. To further elucidate the biological role of ZNF32 and identify potential immunotherapy targets in cancer, we conducted an in-depth analysis of ZNF32. We comprehensively investigated the expression of ZNF32 across tumors using diverse databases, including TCGA, CCLE, TIMER2.

View Article and Find Full Text PDF

Liposomes-Loaded miR-9-5p Alleviated Hypoxia-Ischemia-Induced Mitochondrial Oxidative Stress by Targeting ZBTB20 to Inhibiting Nrf2/Keap1 Interaction in Neonatal Mice.

Antioxid Redox Signal

January 2025

Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.

Hypoxia ischemia (HI) is a leading cause of cerebral palsy and long-term neurological sequelae in infants. Given that mitochondrial dysfunction in neurons contributes to HI brain damage, this study aimed to investigate the regulatory role of miR-9-5p in mitochondrial function following HI injury. Overexpression of miR-9-5p in HI mice or HO-exposed PC12 cells suppressed neuronal injury, associated with increased mitochondrial copy number, normalizing mitochondrial membrane potential, improved nuclear factor-erythroid factor 2-related factor 2 (Nrf2) activation, and downregulation of Keap1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!