Selective, delayed-onset vulnerability of hippocampal CA1 pyramidal cells has been reported as a unique phenomenon in man and the rat four-vessel occlusion (4-VO) model of global ischemia. This has become of great interest for clarification of CA1 pathophysiology and pharmacological intervention after global ischemia. Studies of pathophysiology and pharmacotherapy appear to be impeded by variability in specific criteria and duration of 4-VO ischemia for producing selective CA1 and differential CA1-CA3 damage. The goals of this study were to: (1) develop specific criteria for 4-VO ischemia to ensure selective, bilaterally symmetrical CA1 pyramidal cell damage, (2) examine the effects of 15 min of ischemia on concomitant CA1 cell necrosis and presence of remaining and/or "viable" neurons postischemia, (3) compare 15 and 30 min of ischemia on differential vulnerability of CA1-CA3 subfields, and (4) evaluate the effects of 15 min of ischemia on CA1 pyramidal cell necrosis and glial fibrillary acidic protein (GFAP)-positive astrocyte reactivity in CA1. After 15 min of ischemia, hippocampal pyramidal cell damage was well delineated, with CA1 severely damaged, but leaving CA3 virtually intact. In contrast, 30 min of ischemia produced severe CA1 and less severe CA3 necrosis. Histological evaluations across Days 1, 3, 6, and 14 indicated a significant delayed onset of CA1-CA3 cell necrosis by Day 3. Counting of remaining cells indicated a detectable loss of some large pyramidal neurons even 1 day after ischemia. Compared to controls, there was a differential increase in GFAP-positive astrocytes in CA1-CA3 after ischemia. The results provided quantitative data on the effects of specific 4-VO criteria and durations on: (1) selective CA1 cell necrosis, (2) differential CA1-CA3 cell vulnerability, (3) presence of postischemic remaining and/or viable neurons, and (4) prospect of a "therapeutic window" for pharmacological treatment of CA1 neuronal injury.

Download full-text PDF

Source
http://dx.doi.org/10.1006/exnr.1993.1014DOI Listing

Publication Analysis

Top Keywords

min ischemia
20
ca1 pyramidal
16
pyramidal cell
16
cell necrosis
16
ca1
12
ischemia
12
global ischemia
12
hippocampal ca1
8
cell
8
gfap-positive astrocyte
8

Similar Publications

Background: Near-infrared spectroscopy (NIRS) enables a non-invasive measurement of tissue oxygen saturation (StO) in regions illuminated by near-infrared lights. Vascular occlusion test (VOT) serves as a model to artificially induce forearm ischemia-reperfusion. The combination of StO monitoring and VOT allows for dynamic evaluation of the balance between oxygen delivery and consumption in tissue, as well as the functional reserve of microcirculation.

View Article and Find Full Text PDF

The transient receptor potential ankyrin 1 (TRPA1) channels, characterized as nonselective cation channels with permeability to calcium ions (Ca), are part of the extensive family of transient receptor potential (TRP) channels. Research has demonstrated that TRPA1 channels function as sensors for oxidative stress in the renal tubules. Additionally, TRPA1 expression has increased in renal tissue following ischemia-reperfusion (IR).

View Article and Find Full Text PDF

We investigated whether miR143#12, a synthesized chemically modified miR-143-3p derivative, exerts therapeutic effects on acute myocardial infarction (AMI). Sprague-Dawley rats and Japanese white rabbits underwent 30 min of coronary occlusion followed by 2 weeks of reperfusion. The rat AMI model was intravenously administered with control miRNA (9 μg/kg), 3 μg/kg or 9 μg/kg of miR143#12 1 h after reperfusion, while the rabbit AMI model was intravenously administered with control miRNA (9 μg/kg) or 9 μg/kg of miR143#12.

View Article and Find Full Text PDF

Percutaneous coronary intervention (PCI) is a proven therapy for acute myocardial infarction (AMI) cardiogenic shock (CS). Dual anti-platelet therapy (i.e.

View Article and Find Full Text PDF

Ischemia-reperfusion (I/R) injury is a process in which impaired perfusion is restored by restoring blood flow and tissue recirculation. Nanomedicine uses cutting-edge technologies that emerge from interdisciplinary influences. In the literature, there are very few in vivo and in vitro studies on how cerium oxide (CeO) affects systemic anti-inflammatory response and inflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!