The application of an ultra-fast low angle RARE technique for the 19F imaging of perfluorocarbons (PFCs) used as temporary blood substitutes is described. This sequence is attractive for fast 19F imaging studies that measure the biodistribution of PFCs in vivo, due to its high signal-to-noise ratio. Extensions of this technique for the chemical shift selective measurement of fluorine T1 values are presented. Using the linear dependence between the oxygen partial pressure (pO2) and the T1 relaxation rate of PFC resonances this technique makes possible the fast in vivo measurement of oxygen tension. Using the sequence in a diffusion sensitized form 19F measurements of the diffusion constants of PFCs are also presented. Phantom experiments to test the methods, and in vivo images obtained in rat studies are given and discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mrm.1910290211 | DOI Listing |
Sci Rep
January 2025
Department of Gastroenterological Surgery, Hyogo Medical University, Hyogo, Japan.
We aimed to develop an AI model that recognizes and displays loose connective tissue as a dissectable layer in real-time during gastrointestinal surgery and to evaluate its performance, including feasibility for clinical application. Training data were created under the supervision of gastrointestinal surgeons. Test images and videos were randomly sampled and model performance was evaluated visually by 10 external gastrointestinal surgeons.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China.
Photodynamic therapy (PDT) holds great potential in cancer treatment, leveraging photosensitizers (PSs) to deliver targeted therapy. Fluorination can optimize the physicochemical and biological properties of PSs for better PDT performance. Here, we report some high-performance multifunctional PSs specifically designed for cancer PDT by fluorinating aza-BODIPY with perfluoro--butoxymethyl (PFBM) groups.
View Article and Find Full Text PDFTheranostics
January 2025
Department of Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
Cardiac fibroblasts are activated following myocardial infarction (MI) and cardiac fibrosis is a major driver of the growing burden of heart failure. A non-invasive targeting method for activated cardiac fibroblasts would be advantageous because of their importance for imaging and therapy. Targeting was achieved by linking a 7-amino acid peptide (EP9) to a perfluorocarbon-containing nanoemulsion (PFC-NE) for visualization by F-combined with H-MRI.
View Article and Find Full Text PDFRadiology
December 2024
From the Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom (B.J.P., M.A.N., C.W.H., A.J.S., P.E.T.); Newcastle Magnetic Resonance Centre, Health Innovation Neighbourhood, Newcastle University, Newcastle upon Tyne NE4 5PL, United Kingdom (B.J.P., M.A.N., C.W.H., P.E.T.); Pulmonary, Lung and Respiratory Imaging Sheffield, Section of Medical Imaging and Technologies, Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom (A.M.M., J.M.W.); Department of Respiratory Medicine, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom (I.F.); Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom (R.A.L.); Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom (H.F.F., J.N.S.M.); and Insigneo Institute, University of Sheffield, Sheffield, United Kingdom (J.M.W.).
Background Pulmonary function tests are central to diagnosis and monitoring of respiratory diseases but do not provide information on regional lung function heterogeneity. Fluorine 19 (F) MRI of inhaled perfluoropropane permits quantitative and spatially localized assessment of pulmonary ventilation properties without tracer gas hyperpolarization. Purpose To assess regional lung ventilation properties using F MRI of inhaled perfluoropropane in participants with asthma, participants with chronic obstructive pulmonary disease (COPD), and healthy participants, including quantitative evaluation of bronchodilator response in participants with respiratory disease.
View Article and Find Full Text PDFNanoscale Adv
December 2024
Department of Chemical Engineering, University of Manchester Manchester M13 9PL UK
Nanocrystals are widely explored for a range of medical, imaging, sensing, and energy conversion applications. CdS nanocrystals have been reported as excellent photocatalysts, with thin film CdS also highly important in photovoltaic devices. To optimise properties of nanocrystals, control over phase, facet, and morphology are vital.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!