A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

In vitro studies to investigate the reasons for the low potency of cholestyramine and colestipol. | LitMetric

In vitro studies to investigate the reasons for the low potency of cholestyramine and colestipol.

J Pharm Sci

SmithKline Beecham Pharmaceuticals, Research and Development, Welwyn, Hertfordshire, U.K.

Published: January 1993

The association rates, dissociation rates, and equilibrium binding of bile acids with cholestyramine and colestipol were measured under physiological conditions with the most abundant bile acids found in humans. Cholestyramine and colestipol equilibrated with the bile acids (5 mM) within 1 h and they bound > 58% and > 17% of the bile acid, respectively, when at equilibrium with physiological concentrations of bile acid (4.3-10.1 mM). However, the conjugated trihydroxy bile acids taurocholic acid and glycocholic acid dissociated rapidly from both cholestyramine and colestipol when the sequestrants, preloaded with the bile acid, were washed with the Krebs-Henseleit buffer. The taurine-conjugated and dihydroxy bile acids dissociated more slowly from cholestyramine and colestipol than the glycine-conjugated and trihydroxy bile acids and, therefore, would be expected to avoid reabsorption to a greater extent by the terminal ileum and colon in vivo. We predict from these results that the reasons for the low potency of cholestyramine and colestipol are that they bind a relatively small proportion of the trihydroxy bile acids in the duodenum and jejunum and that all of the bile acids dissociate to varying extents from the sequestrants in the terminal ileum where the unbound bile acids are reabsorbed by the gut.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jps.2600820118DOI Listing

Publication Analysis

Top Keywords

bile acids
36
cholestyramine colestipol
24
bile
12
bile acid
12
trihydroxy bile
12
acids
9
reasons low
8
low potency
8
potency cholestyramine
8
terminal ileum
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!