Vitamin B-6 deficiency alters rat enterocyte calcium homeostasis but not duodenal transport.

J Nutr

Department of Biochemistry and Experimental Medicine, Child's Health Centre, Warsaw-Miedzylesie, Poland.

Published: February 1993

Isolated enterocytes were used as differential transporting cells to examine calcium homeostasis in control and vitamin B-6-deficient rats. Kinetic analysis of calcium fluxes, as well as biochemical determinations, indicated that enterocytes from control animals had high concentrations of cytosol ionized calcium (318.5 +/- 22.4 nmol/L) and a large pool of exchangeable calcium (2.72 nmol/mg protein, or 86% of total cell calcium). Vitamin B-6 deficiency resulted in a 44% reduction in total cellular calcium (1.71 +/- 0.24 vs. 3.07 +/- 0.29 nmol/mg protein), a 69% reduction in total exchangeable calcium (0.85 vs. 2.72 nmol/mg protein) and a 56% reduction in cytosol ionized calcium concentration (141.4 +/- 13.5 vs. 318.5 +/- 22.4 nmol/L). Calcium fluxes between all cellular compartments were markedly diminished as a result of vitamin B-6 deficiency. However, vitamin B-6 deficiency did not affect the basic morphological or functional features of the enterocytes, such as cell viability, cell volume, membrane permeability and protein content. Moreover, intestinal calcium transport in vivo was not affected during vitamin B-6 deficiency, perhaps due to the greater paracellular ion movement compensating for the lower transcellular transport.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jn/123.2.204DOI Listing

Publication Analysis

Top Keywords

vitamin b-6
20
b-6 deficiency
20
nmol/mg protein
12
calcium
11
calcium homeostasis
8
calcium fluxes
8
cytosol ionized
8
ionized calcium
8
3185 +/-
8
+/- 224
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!