A sensitive and reliable method is described for the determination of aflatoxins B1, B2, G1 and G2, ochratoxin A and zearalenone in animal feed ingredients. A multi-toxin extraction and clean-up procedure is used, with dichloromethane-1 M hydrochloric acid (10:1) being used for the extraction and gel permeation chromatography being used for the clean-up. The liquid chromatographic method developed for the separation of the six mycotoxins involves gradient elution with a reversed-phase C18 column and fluorescence detection. Recoveries, repeatability and reproducibility have been determined on maize, palm and wheat. The detection limits varied depending on the type of feed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0021-9673(93)87036-l | DOI Listing |
Toxins (Basel)
January 2025
Biotech Agrifood, Faculty of Pharmacy and Food Sciences, Universitat de València, Avda. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain.
Aflatoxin B1 (AFB1) and Ochratoxin A (OTA) are considered the most important mycotoxins in terms of food safety. The aim of this study was to evaluate the hepatotoxicity of AFB1 and OTA exposure in Wistar rats and to assess the beneficial effect of fermented whey (FW) and pumpkin (P) as functional ingredients through a proteomic approach. For the experimental procedures, rats were fed AFB1 and OTA individually or in combination, with the addition of FW or a FW-P mixture during 28 days.
View Article and Find Full Text PDFFront Microbiol
January 2025
Laboratory of Food Microbiology and Mycotoxicology, Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil.
Introduction: Microbial contamination remains a vital challenge across the food production chain, particularly due to mycotoxins-secondary metabolites produced by several genera of fungi such as , and . These toxins, including aflatoxins, fumonisins, ochratoxins, and trichothecenes (nivalenol, deoxynivalenol, T2, HT-2). These contaminants pose severe risks to human and animal health, with their potential to produce a variety of different toxic effects.
View Article and Find Full Text PDFMalays J Med Sci
December 2024
First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
Food safety is a key priority for public health. However, consumer demand for cheese products may expose the population to the risk of mycotoxicosis and cancer, among others. Acute mycotoxicosis and cancer are examples of linked disorders.
View Article and Find Full Text PDFBMC Biotechnol
January 2025
Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, Sharkia, 44519, Egypt.
Background: This study employed melanin synthesized by Aspergillus flavus and Aspergillus carbonarius to inhibit the production of mycotoxins and bioremediation of heavy metals (HMs).
Methods: First, twenty fungal isolates were obtained from soil samples, and were evaluated to produce melanin. The melanin of the most potent producers has undergone several confirmatory experiments, including, Dihydroxyphenylalanine (DOPA)-inhibitor-kojic acid pathway detection, High-performance liquid chromatography (HPLC), Fourier-transform infrared (FTIR) and Nuclear magnetic resonance (NMR).
Food Res Int
January 2025
Laboratory of Food Chemistry and Toxicology, Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Spain.
Mycotoxins pose significant health risks due to their prevalence in food products and severe health implications, including carcinogenicity. This study investigates the bioavailability of mycotoxins aflatoxin B1 (AFB1), ochratoxin A (OTA), and zearalenone (ZEN) individually and combined, in the presence of identified polyphenols from tiger nut beverage (TNB) and tiger nut by-product (TNBP) using the in vitro model Caco-2 cells, which simulates the human intestinal barrier. The objective is to understand how bioactive compounds from TNBP can mitigate the effects of AFB1, OTA and ZEN (and their combination) by bioavailability interference, contributing to safer food products and innovative food safety strategies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!