The distribution of muscarinic and nicotinic cholinergic binding sites in the cat nucleus tractus solitarii was studied by the technique of in vitro autoradiography. Using the antagonist [3H]quinuclidinyl benzilate, muscarinic binding sites were differentially located in subdivisions of the nucleus tractus solitarii. The majority of muscarinic binding sites were located predominantly in the caudal half of the nucleus, reaching their greatest amounts at the mid levels of the nucleus tractus solitarii. The medial, dorsolateral, intermediate, and interstitial subdivisions contained the highest densities of quinuclidinyl benzilate binding sites. Nicotinic cholinergic binding sites, using [3H]nicotine and [125I]alpha-bungarotoxin, had unique patterns of distribution. With [3H]nicotine the majority of binding sites were located in rostral levels of the nucleus with very few binding sites present in the caudal half. In contrast, [125I]alpha-bungarotoxin binding sites were present mainly in subdivisions located in the caudal half of the nucleus, i.e., commissural, ventrolateral, dorsolateral, medial, and intermediate subdivisions, and dropped off precipitously at more rostral levels. The differential distribution of [3H]nicotine and [125I]alpha-bungarotoxin suggests the two ligands may be labeling different types of nicotinic binding sites in the nucleus tractus solitarii. The unique distribution of muscarinic and nicotinic cholinergic binding sites in the various subdivisions of the nucleus solitarii suggests that muscarinic and nicotine mechanisms may play an active role in the regulation of the diverse autonomic functions at the level of the nucleus tractus solitarii.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cne.903270203DOI Listing

Publication Analysis

Top Keywords

binding sites
44
nucleus tractus
24
tractus solitarii
24
[3h]nicotine [125i]alpha-bungarotoxin
12
nicotinic cholinergic
12
cholinergic binding
12
caudal half
12
binding
11
sites
11
nucleus
10

Similar Publications

SARS-CoV-2 variant recurrence has emphasized the imperative prerequisite for effective antivirals. The main protease (Mpro) of SARS-CoV-2 is crucial for viral replication, making it one of the prime and promising antiviral targets. Mpro features several druggable sites, including active sites and allosteric sites near the dimerization interface, that regulate its catalytic activity.

View Article and Find Full Text PDF

Methane (CH), which is the main component of natural gas, is an abundant and widely available carbon resource. However, CH has a low energy density of only 36 kJ L under ambient conditions, which is significantly lower than that of gasoline (. 34 MJ L).

View Article and Find Full Text PDF

Sodium butyrate regulates macrophage polarization by TGR5/β-arrestin2 in vitro.

Mol Med

January 2025

Department of Critical Care Medicine, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060, Hubei, China.

Background: Macrophages play an important role in the pathogenesis of ulcerative colitis (UC). We will explore the effects of sodium butyrate (SB) on macrophage function.

Methods: The targets of butyric acid were identified using SwissTargetPrediction database and surface plasmon resonance (SPR).

View Article and Find Full Text PDF

The VHL-containing cullin-RING E3 ubiquitin ligase (CRL2) complex is an E3 ligase commonly used in targeted protein degradation (TPD). Hydroxyproline-based ligands that mimic VHL substrates have been developed as anchor molecules for proteolysis-targeting chimeras (PROTACs) in TPD. To expand the chemical space for VHL ligands, we conducted fragment screening using VHL-ELOB-ELOC (VBC) proteins.

View Article and Find Full Text PDF

Hsa_circ_0001304 promotes vascular neointimal hyperplasia accompanied by autophagy activation.

Commun Biol

January 2025

Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, 050017, China.

Aberrant autophagy in vascular smooth muscle cells (VSMCs) is associated with the progression of vascular remodeling diseases caused by neointimal hyperplasia. Platelet-derived growth factor-BB (PDGF-BB)-induced vascular remodeling is accompanied by autophagy activation, however, the involvement of circular RNAs (circRNAs) remains unclear. Here, we show the role of PDGF-BB-regulated hsa_circ_0001304 (circ-1304) in neointimal hyperplasia and its potential involvement in VSMC autophagy, while also elucidating the potential mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!