A cDNA clone, designated UGT2B7 variant, encoding a 529-amino acid human liver microsomal uridine diphosphate-glucuronosyltransferase (UGT) was isolated from a lambda gt11 human liver cDNA library. UGT2B7 variant synthesized in COS-7 cells was screened for activity toward a range of clinically used drugs and other xenobiotics. The expressed enzyme glucuronidated several carboxylic acid-containing nonsteroidal antiinflammatory agents including, in order of relative substrate activity, naproxen, ketoprofen, ibuprofen, fenoprofen, tiaprofenic acid, benoxprofen, zomepirac, diflunisal and indomethacin. Additionally, the stereoselectivity of ketoprofen, naproxen (S/R ratio approximately unity) and ibuprofen (S/R ratio 1.62) glucuronidation by the UGT2B7 variant was shown to differ. Two other carboxylic acid-containing drugs (clofibric acid and valproic acid) and a limited range of drugs containing an alcohol or phenolic functional group were also glucoronidated by expressed UGT2B7 variant. The deduced amino sequence of UGT2B7 variant was shown to differ only in one amino acid (tyrosine for histidine at position 268) from a previously published uridine diphosphate-glucuronosyltransferase cDNA, UGT2B7. Like the previously reported enzyme, this variant efficiently glucuronidated hyodeoxycholic acid, estriol, 4-hydroxyestrone and 2-hydroxyestriol. It is, therefore, apparent that UGT2B7 variant has the capacity to glucuronidate with a degree of specificity both endogenous compounds and xenobiotics. Preferred substrates for UGT2B7 variant include xenobiotic carboxylic acids, polyhydroxylated estrogens and hyodeoxycholic acid.
Download full-text PDF |
Source |
---|
Forensic Sci Int Genet
December 2024
CHU Lille, Unité Fonctionnelle de Toxicologie, Lille F-59000, France; Universite de Lille, ULR 4483 - IMPECS - IMPact de l'Environnement Chimique sur la Santé, Lille, France.
Genetic polymorphism can cause variation in tramadol (TR) pharmacokinetic characteristics and the expected clinical response. In forensic toxicology, the data about parent and metabolite concentrations (MRs; metabolic ratios) could facilitate to determine the cause of death and to assess time between drug intake and death. In this study, the aim was to investigate if UGT1A8, UGT2B7, ABCC2, and SLC22A1 genotyping can facilitate interpretation by investigating the frequency of UGT1A8, UGT2B7, ABCC2, and SLC22A1 genotypes in forensic autopsy cases positive for TR and to assess whether there is a correlation between these genetic variants and MRs.
View Article and Find Full Text PDFPathol Res Pract
December 2024
Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina 86057-970, Brazil. Electronic address:
Biomarkers that identify tumors with better/worse prognosis can help reduce treatment costs and contribute to patient survival. In urothelial bladder cancer (UBC), accurate prediction of recurrence and progression is essential to inform therapeutic management. Herein, we explore the role of genetic variants of xenobiotic metabolic pathways in UBC susceptibility and prognosis.
View Article and Find Full Text PDFPharmacogenomics
November 2024
Department of Clinical Pharmacy, General Hospital of Central Theater Command, Wuhan, Hubei Province, 430070, China.
Valproic acid (VPA) is a classic broad-spectrum antiepileptic drug, with significant pharmacokinetic variability. Genetic polymorphisms contribute to this variability, influencing both VPA trough serum concentration (VPA concentration) and VPA-induced liver injury. Our study aims to investigate the association between polymorphisms of uridine diphosphate glucuronyl transferase () , and VPA concentration and screen for potential genetic loci affecting VPA-induced liver injury.
View Article and Find Full Text PDFClin Transl Sci
October 2024
Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
Next-generation sequencing (NGS) has transformed pharmacogenomics (PGx), enabling thorough profiling of pharmacogenes using computational methods and advancing personalized medicine. The Thai Pharmacogenomic Database-2 (TPGxD-2) analyzed 948 whole genome sequences, primarily from the Electricity Generating Authority of Thailand (EGAT) cohort. This study is an extension of the previous Thai Pharmacogenomic Database (TPGxD-1) and specifically focused on 26 non-very important pharmacogenes (VIPGx) genes.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
November 2024
Laboratory and Clinical Physiopathology Program, State University of Londrina (UEL), Londrina, Paraná, Brazil.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!