2R,4R,5S-(2-amino-4,5-(1,2-cyclohexyl)-7-phosphonoheptanoic acid) (NPC 17742), the most potent isomer of the mixture 2-amino-4,5-(1,2-cyclohexyl)-7-phosphonoheptanoic acid (NPC 12626), was evaluated for activity in tests associated with receptors for excitatory amino acids. In receptor binding assays, NPC 17742 was selective for the N-methyl-D-aspartate (NMDA) receptor with a potency comparable to that of D(-, -3-(2-carboxypiperazine-4-yl)propyl-1-phosphonic acid. Like (+/-)cis-4-phosphono-methyl-2-piperidine carboxylic acid (CGS 19755) and (+/-)(E)-2-amino-4-methyl-5-phosphono-3-penteneoic acid (CGP 37849), NPC 17742 competitively inhibited NMDA-induced enhancement of 1-[(2-thienyl)cyclohexyl]piperidine binding to the NMDA receptor ionophore and partially inhibited [3H]glycine binding to strychnine-insensitive sites. In contrast, NPC 17742 and CGP 37849 inhibited Mg(++)-stimulated 1-[(2-thienyl)cyclohexyl]piperidine binding in a noncompetitive fashion. In voltage-clamped Xenopus oocytes expressing excitatory amino acid receptors, NPC 17742 (pKB = 6.91) was equipotent with CGP 37849 (pKB = 7.17) in inhibiting NMDA-induced inward currents. Likewise, NPC 17742 (ED50 = 2.68 mg/kg) was equipotent with CGP 37849 and CGS 19755 in blocking NMDA-induced convulsions, but was less potent than these two compounds in the maximal electroshock test. Unlike CGP 37849 or CGS 19755, NPC 17742 potently antagonized seizures induced by pentylenetetrazol. In a model of global ischemia, low doses of NPC 17742 given either before or after ischemic result were effective in blocking damage to hippocampal CA1 neurons. The pharmacologic responses to NPC 17742 occurred at doses 30- to 300-fold lower than the acute lethal dose.(ABSTRACT TRUNCATED AT 250 WORDS)
Download full-text PDF |
Source |
---|
Psychopharmacology (Berl)
April 2009
Department of Pharmacology and Toxicology, Virginia Commonwealth University, Box 980613, Richmond, VA 23298-0613, USA.
Rationale: Many N-methyl-D-aspartate (NMDA) antagonists produce phencyclidine (PCP)-like side effects that limit their clinical utility. NMDA glycine-site antagonists may be less likely to produce these effects than other site-selective NMDA antagonists.
Objectives: The objective of the study is to compare the discriminative stimulus effects of novel NMDA glycine-site drugs to those of channel blocking and competitive NMDA antagonists.
Life Sci
May 2004
Department of Pharmacology and Toxicology, Virginia Commonwealth University, PO Box 980613, Richmond, VA 23298-0613, USA.
N-methyl-D-aspartate (NMDA) antagonists share a number of pharmacological effects with GABA(A) agonists, including anxiolytic and anticonvulsant effects. This study evaluated the effects of site-selective NMDA antagonists in rats trained to discriminate the benzodiazepine diazepam from vehicle. As expected, diazepam produced robust discriminative stimulus effects and dose-dependently substituted for the training dose.
View Article and Find Full Text PDFBehav Pharmacol
November 2002
Department of Pharmacology and Toxicology, Medical College of Virginia Commonwealth University, Richmond, Virginia 23298-0613, USA.
Low-affinity channel-blocking -methyl-D-aspartate (NMDA) antagonists have been of interest for clinical development because they are purported to produce few phencyclidine (PCP)-like side-effects, particularly at therapeutic doses. In the current study, two low-affinity NMDA channel blockers, AR-R 13950AA and AR-R 16283AA, were evaluated for NMDA antagonist-associated behavioral effects. The drugs were tested in rats and rhesus monkeys trained to discriminate PCP from saline, using a standard two-lever drug discrimination paradigm, under a fixed-ratio (FR) schedule of food reinforcement.
View Article and Find Full Text PDFNeuropharmacology
December 2001
Department of Pharmacology and Toxicology, Virginia Commonwealth University, Box 980613, Richmond, VA 23298-0613, USA.
Antagonists at the N-methyl-D-aspartate (NMDA) sub-type of glutamate receptor are purported to have detrimental effects on cognitive processes. In order to examine the site selectivity of these effects, phencycline (PCP), dizocilpine, and memantine (PCP-site antagonists), SDZEAA 494 and NPC17742 (competitive NMDA antagonists), ACEA 1021 (glycine-site antagonist), and eliprodil (NR2B-selective polyamine-site selective antagonist) were tested in rats performing a delayed nonmatch-to-sample task. Dizocilpine, PCP and memantine significantly decreased accuracy and discriminability, particularly during brief delay trials.
View Article and Find Full Text PDFNeuroreport
September 2001
Neuroscience Program and the Department of Psychology, University of Western Ontario, London, Ontario, Canada N6A 5C2.
There is accumulating evidence for rapid, non-genomic behavioral effects of various steroids including that of the glucocorticoid, corticosterone. Using an odor preference test, the responses of which are indicative of mate preferences and sexual interest, we examined the effects of acute corticosterone on the responses of oestrous female mice to male odors. Control female mice displayed an overwhelming preference for the odors of male mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!